Cargando…
Improvement of RNA In Situ Hybridisation for Grapevine Fruits and Ovules
The European grapevine (Vitis vinifera L.) is one of the world’s most widely cultivated and economically important fruit crops. Seedless fruits are particularly desired for table grapes, with seedlessness resulting from stenospermocarpy being an important goal for cultivar improvement. The establish...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821503/ https://www.ncbi.nlm.nih.gov/pubmed/36614240 http://dx.doi.org/10.3390/ijms24010800 |
_version_ | 1784865712927408128 |
---|---|
author | Yao, Jin Li, Xingmei Wu, Na Zhang, Songlin Gao, Min Wang, Xiping |
author_facet | Yao, Jin Li, Xingmei Wu, Na Zhang, Songlin Gao, Min Wang, Xiping |
author_sort | Yao, Jin |
collection | PubMed |
description | The European grapevine (Vitis vinifera L.) is one of the world’s most widely cultivated and economically important fruit crops. Seedless fruits are particularly desired for table grapes, with seedlessness resulting from stenospermocarpy being an important goal for cultivar improvement. The establishment of an RNA in situ hybridisation (ISH) system for grape berries and ovules is, therefore, important for understanding the molecular mechanisms of ovule abortion in stenospermocarpic seedless cultivars. We improved RNA in situ hybridisation procedures for developing berries and ovules by targeting two transcription factor genes, VvHB63 and VvTAU, using two seeded varieties, ‘Red Globe’ and ‘Pinot Noir’, and two seedless cultivars, ‘Flame Seedless’ and ‘Thompson Seedless’. Optimisation focused on the time of proteinase K treatment, probe length, probe concentration, hybridisation temperature and post-hybridisation washing conditions. The objectives were to maximise hybridisation signals and minimise background interference, while still preserving tissue integrity. For the target genes and samples tested, the best results were obtained with a pre-hybridisation proteinase K treatment of 30 min, probe length of 150 bp and concentration of 100 ng/mL, hybridisation temperature of 50 °C, three washes with 0.2× saline sodium citrate (SSC) solution and blocking with 1% blocking reagent for 45 min during the subsequent hybridisation. The improved ISH system was used to study the spatiotemporal expression patterns of genes related to ovule development at a microscopic level. |
format | Online Article Text |
id | pubmed-9821503 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98215032023-01-07 Improvement of RNA In Situ Hybridisation for Grapevine Fruits and Ovules Yao, Jin Li, Xingmei Wu, Na Zhang, Songlin Gao, Min Wang, Xiping Int J Mol Sci Communication The European grapevine (Vitis vinifera L.) is one of the world’s most widely cultivated and economically important fruit crops. Seedless fruits are particularly desired for table grapes, with seedlessness resulting from stenospermocarpy being an important goal for cultivar improvement. The establishment of an RNA in situ hybridisation (ISH) system for grape berries and ovules is, therefore, important for understanding the molecular mechanisms of ovule abortion in stenospermocarpic seedless cultivars. We improved RNA in situ hybridisation procedures for developing berries and ovules by targeting two transcription factor genes, VvHB63 and VvTAU, using two seeded varieties, ‘Red Globe’ and ‘Pinot Noir’, and two seedless cultivars, ‘Flame Seedless’ and ‘Thompson Seedless’. Optimisation focused on the time of proteinase K treatment, probe length, probe concentration, hybridisation temperature and post-hybridisation washing conditions. The objectives were to maximise hybridisation signals and minimise background interference, while still preserving tissue integrity. For the target genes and samples tested, the best results were obtained with a pre-hybridisation proteinase K treatment of 30 min, probe length of 150 bp and concentration of 100 ng/mL, hybridisation temperature of 50 °C, three washes with 0.2× saline sodium citrate (SSC) solution and blocking with 1% blocking reagent for 45 min during the subsequent hybridisation. The improved ISH system was used to study the spatiotemporal expression patterns of genes related to ovule development at a microscopic level. MDPI 2023-01-02 /pmc/articles/PMC9821503/ /pubmed/36614240 http://dx.doi.org/10.3390/ijms24010800 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Communication Yao, Jin Li, Xingmei Wu, Na Zhang, Songlin Gao, Min Wang, Xiping Improvement of RNA In Situ Hybridisation for Grapevine Fruits and Ovules |
title | Improvement of RNA In Situ Hybridisation for Grapevine Fruits and Ovules |
title_full | Improvement of RNA In Situ Hybridisation for Grapevine Fruits and Ovules |
title_fullStr | Improvement of RNA In Situ Hybridisation for Grapevine Fruits and Ovules |
title_full_unstemmed | Improvement of RNA In Situ Hybridisation for Grapevine Fruits and Ovules |
title_short | Improvement of RNA In Situ Hybridisation for Grapevine Fruits and Ovules |
title_sort | improvement of rna in situ hybridisation for grapevine fruits and ovules |
topic | Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821503/ https://www.ncbi.nlm.nih.gov/pubmed/36614240 http://dx.doi.org/10.3390/ijms24010800 |
work_keys_str_mv | AT yaojin improvementofrnainsituhybridisationforgrapevinefruitsandovules AT lixingmei improvementofrnainsituhybridisationforgrapevinefruitsandovules AT wuna improvementofrnainsituhybridisationforgrapevinefruitsandovules AT zhangsonglin improvementofrnainsituhybridisationforgrapevinefruitsandovules AT gaomin improvementofrnainsituhybridisationforgrapevinefruitsandovules AT wangxiping improvementofrnainsituhybridisationforgrapevinefruitsandovules |