Cargando…
Chemical and Physical Modification of Lignin for Green Polymeric Composite Materials
Lignin, a valuable polymer of natural origin, displays numerous desired intrinsic properties; however, modification processes leading to the value-added products suitable for composite materials’ applications are in demand. Chemical modification routes involve mostly reactions with hydroxyl groups p...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821536/ https://www.ncbi.nlm.nih.gov/pubmed/36614353 http://dx.doi.org/10.3390/ma16010016 |
_version_ | 1784865720288411648 |
---|---|
author | Komisarz, Karolina Majka, Tomasz M. Pielichowski, Krzysztof |
author_facet | Komisarz, Karolina Majka, Tomasz M. Pielichowski, Krzysztof |
author_sort | Komisarz, Karolina |
collection | PubMed |
description | Lignin, a valuable polymer of natural origin, displays numerous desired intrinsic properties; however, modification processes leading to the value-added products suitable for composite materials’ applications are in demand. Chemical modification routes involve mostly reactions with hydroxyl groups present in the structure of lignin, but other paths, such as copolymerization or grafting, are also utilized. On the other hand, physical techniques, such as irradiation, freeze-drying, and sorption, to enhance the surface properties of lignin and the resulting composite materials, are developed. Various kinds of chemically or physically modified lignin are discussed in this review and their effects on the properties of polymeric (bio)materials are presented. Lignin-induced enhancements in green polymer composites, such as better dimensional stability, improved hydrophobicity, and improved mechanical properties, along with biocompatibility and non-cytotoxicity, have been presented. This review addresses the challenges connected with the efficient modification of lignin, which depends on polymer origin and the modification conditions. Finally, future outlooks on modified lignins as useful materials on their own and as prospective biofillers for environmentally friendly polymeric materials are presented. |
format | Online Article Text |
id | pubmed-9821536 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98215362023-01-07 Chemical and Physical Modification of Lignin for Green Polymeric Composite Materials Komisarz, Karolina Majka, Tomasz M. Pielichowski, Krzysztof Materials (Basel) Review Lignin, a valuable polymer of natural origin, displays numerous desired intrinsic properties; however, modification processes leading to the value-added products suitable for composite materials’ applications are in demand. Chemical modification routes involve mostly reactions with hydroxyl groups present in the structure of lignin, but other paths, such as copolymerization or grafting, are also utilized. On the other hand, physical techniques, such as irradiation, freeze-drying, and sorption, to enhance the surface properties of lignin and the resulting composite materials, are developed. Various kinds of chemically or physically modified lignin are discussed in this review and their effects on the properties of polymeric (bio)materials are presented. Lignin-induced enhancements in green polymer composites, such as better dimensional stability, improved hydrophobicity, and improved mechanical properties, along with biocompatibility and non-cytotoxicity, have been presented. This review addresses the challenges connected with the efficient modification of lignin, which depends on polymer origin and the modification conditions. Finally, future outlooks on modified lignins as useful materials on their own and as prospective biofillers for environmentally friendly polymeric materials are presented. MDPI 2022-12-20 /pmc/articles/PMC9821536/ /pubmed/36614353 http://dx.doi.org/10.3390/ma16010016 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Komisarz, Karolina Majka, Tomasz M. Pielichowski, Krzysztof Chemical and Physical Modification of Lignin for Green Polymeric Composite Materials |
title | Chemical and Physical Modification of Lignin for Green Polymeric Composite Materials |
title_full | Chemical and Physical Modification of Lignin for Green Polymeric Composite Materials |
title_fullStr | Chemical and Physical Modification of Lignin for Green Polymeric Composite Materials |
title_full_unstemmed | Chemical and Physical Modification of Lignin for Green Polymeric Composite Materials |
title_short | Chemical and Physical Modification of Lignin for Green Polymeric Composite Materials |
title_sort | chemical and physical modification of lignin for green polymeric composite materials |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821536/ https://www.ncbi.nlm.nih.gov/pubmed/36614353 http://dx.doi.org/10.3390/ma16010016 |
work_keys_str_mv | AT komisarzkarolina chemicalandphysicalmodificationofligninforgreenpolymericcompositematerials AT majkatomaszm chemicalandphysicalmodificationofligninforgreenpolymericcompositematerials AT pielichowskikrzysztof chemicalandphysicalmodificationofligninforgreenpolymericcompositematerials |