Cargando…
A Framework of Analysis to Facilitate the Harmonization of Multicenter Radiomic Features in Prostate Cancer
Pooling radiomic features coming from different centers in a statistical framework is challenging due to the variability in scanner models, acquisition protocols, and reconstruction settings. To remove technical variability, commonly called batch effects, different statistical harmonization strategi...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821561/ https://www.ncbi.nlm.nih.gov/pubmed/36614941 http://dx.doi.org/10.3390/jcm12010140 |
Sumario: | Pooling radiomic features coming from different centers in a statistical framework is challenging due to the variability in scanner models, acquisition protocols, and reconstruction settings. To remove technical variability, commonly called batch effects, different statistical harmonization strategies have been widely used in genomics but less considered in radiomics. The aim of this work was to develop a framework of analysis to facilitate the harmonization of multicenter radiomic features extracted from prostate T2-weighted magnetic resonance imaging (MRI) and to improve the power of radiomics for prostate cancer (PCa) management in order to develop robust non-invasive biomarkers translating into clinical practice. To remove technical variability and correct for batch effects, we investigated four different statistical methods (ComBat, SVA, Arsynseq, and mixed effect). The proposed approaches were evaluated using a dataset of 210 prostate cancer (PCa) patients from two centers. The impacts of the different statistical approaches were evaluated by principal component analysis and classification methods (LogitBoost, random forest, K-nearest neighbors, and decision tree). The ComBat method outperformed all other methods by achieving 70% accuracy and 78% AUC with the random forest method to automatically classify patients affected by PCa. The proposed statistical framework enabled us to define and develop a standardized pipeline of analysis to harmonize multicenter T2W radiomic features, yielding great promise to support PCa clinical practice. |
---|