Cargando…
On the intrinsic curvature of animal whiskers
Facial vibrissae (whiskers) are thin, tapered, flexible, hair-like structures that are an important source of tactile sensory information for many species of mammals. In contrast to insect antennae, whiskers have no sensors along their lengths. Instead, when a whisker touches an object, the resultin...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821693/ https://www.ncbi.nlm.nih.gov/pubmed/36607960 http://dx.doi.org/10.1371/journal.pone.0269210 |
_version_ | 1784865759698092032 |
---|---|
author | Luo, Yifu Hartmann, Mitra J. Z. |
author_facet | Luo, Yifu Hartmann, Mitra J. Z. |
author_sort | Luo, Yifu |
collection | PubMed |
description | Facial vibrissae (whiskers) are thin, tapered, flexible, hair-like structures that are an important source of tactile sensory information for many species of mammals. In contrast to insect antennae, whiskers have no sensors along their lengths. Instead, when a whisker touches an object, the resulting deformation is transmitted to mechanoreceptors in a follicle at the whisker base. Previous work has shown that the mechanical signals transmitted along the whisker will depend strongly on the whisker’s geometric parameters, specifically on its taper (how diameter varies with arc length) and on the way in which the whisker curves, often called “intrinsic curvature.” Although previous studies have largely agreed on how to define taper, multiple methods have been used to quantify intrinsic curvature. The present work compares and contrasts different mathematical approaches towards quantifying this important parameter. We begin by reviewing and clarifying the definition of “intrinsic curvature,” and then show results of fitting whisker shapes with several different functions, including polynomial, fractional exponent, elliptical, and Cesàro. Comparisons are performed across ten species of whiskered animals, ranging from rodents to pinnipeds. We conclude with a discussion of the advantages and disadvantages of using the various models for different modeling situations. The fractional exponent model offers an approach towards developing a species-specific parameter to characterize whisker shapes within a species. Constructing models of how the whisker curves is important for the creation of mechanical models of tactile sensory acquisition behaviors, for studies of comparative evolution, morphology, and anatomy, and for designing artificial systems that can begin to emulate the whisker-based tactile sensing of animals. |
format | Online Article Text |
id | pubmed-9821693 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-98216932023-01-07 On the intrinsic curvature of animal whiskers Luo, Yifu Hartmann, Mitra J. Z. PLoS One Research Article Facial vibrissae (whiskers) are thin, tapered, flexible, hair-like structures that are an important source of tactile sensory information for many species of mammals. In contrast to insect antennae, whiskers have no sensors along their lengths. Instead, when a whisker touches an object, the resulting deformation is transmitted to mechanoreceptors in a follicle at the whisker base. Previous work has shown that the mechanical signals transmitted along the whisker will depend strongly on the whisker’s geometric parameters, specifically on its taper (how diameter varies with arc length) and on the way in which the whisker curves, often called “intrinsic curvature.” Although previous studies have largely agreed on how to define taper, multiple methods have been used to quantify intrinsic curvature. The present work compares and contrasts different mathematical approaches towards quantifying this important parameter. We begin by reviewing and clarifying the definition of “intrinsic curvature,” and then show results of fitting whisker shapes with several different functions, including polynomial, fractional exponent, elliptical, and Cesàro. Comparisons are performed across ten species of whiskered animals, ranging from rodents to pinnipeds. We conclude with a discussion of the advantages and disadvantages of using the various models for different modeling situations. The fractional exponent model offers an approach towards developing a species-specific parameter to characterize whisker shapes within a species. Constructing models of how the whisker curves is important for the creation of mechanical models of tactile sensory acquisition behaviors, for studies of comparative evolution, morphology, and anatomy, and for designing artificial systems that can begin to emulate the whisker-based tactile sensing of animals. Public Library of Science 2023-01-06 /pmc/articles/PMC9821693/ /pubmed/36607960 http://dx.doi.org/10.1371/journal.pone.0269210 Text en © 2023 Luo, Hartmann https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Luo, Yifu Hartmann, Mitra J. Z. On the intrinsic curvature of animal whiskers |
title | On the intrinsic curvature of animal whiskers |
title_full | On the intrinsic curvature of animal whiskers |
title_fullStr | On the intrinsic curvature of animal whiskers |
title_full_unstemmed | On the intrinsic curvature of animal whiskers |
title_short | On the intrinsic curvature of animal whiskers |
title_sort | on the intrinsic curvature of animal whiskers |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821693/ https://www.ncbi.nlm.nih.gov/pubmed/36607960 http://dx.doi.org/10.1371/journal.pone.0269210 |
work_keys_str_mv | AT luoyifu ontheintrinsiccurvatureofanimalwhiskers AT hartmannmitrajz ontheintrinsiccurvatureofanimalwhiskers |