Cargando…
RCFGL: Rapid Condition adaptive Fused Graphical Lasso and application to modeling brain region co-expression networks
Inferring gene co-expression networks is a useful process for understanding gene regulation and pathway activity. The networks are usually undirected graphs where genes are represented as nodes and an edge represents a significant co-expression relationship. When expression data of multiple (p) gene...
Autores principales: | Seal, Souvik, Li, Qunhua, Basner, Elle Butler, Saba, Laura M., Kechris, Katerina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821764/ https://www.ncbi.nlm.nih.gov/pubmed/36607897 http://dx.doi.org/10.1371/journal.pcbi.1010758 |
Ejemplares similares
-
Condition-adaptive fused graphical lasso (CFGL): An adaptive procedure for inferring condition-specific gene co-expression network
por: Lyu, Yafei, et al.
Publicado: (2018) -
Analysis of Twitter data with the Bayesian fused graphical lasso
por: Aflakparast, Mehran, et al.
Publicado: (2020) -
Weighted Fused Pathway Graphical Lasso for Joint Estimation of Multiple Gene Networks
por: Wu, Nuosi, et al.
Publicado: (2019) -
An Augmented High-Dimensional Graphical Lasso Method to Incorporate Prior Biological Knowledge for Global Network Learning
por: Zhuang, Yonghua, et al.
Publicado: (2022) -
De-Biased Graphical Lasso for High-Frequency Data
por: Koike, Yuta
Publicado: (2020)