Cargando…
An optimized GAN method based on the Que-Attn and contrastive learning for underwater image enhancement
Research on underwater image processing has increased significantly in the past decade due to the precious resources that exist underwater. However, it is still a challenging problem to restore degraded underwater images. Existing prior-based methods show limited performance in many cases due to the...
Autores principales: | Lan, Zeru, Zhou, Bin, Zhao, Weiwei, Wang, Shaoqing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821782/ https://www.ncbi.nlm.nih.gov/pubmed/36607967 http://dx.doi.org/10.1371/journal.pone.0279945 |
Ejemplares similares
-
AttnTAP: A Dual-input Framework Incorporating the Attention Mechanism for Accurately Predicting TCR-peptide Binding
por: Xu, Ying, et al.
Publicado: (2022) -
Enhancement and Optimization of Underwater Images and Videos Mapping
por: Li, Chengda, et al.
Publicado: (2023) -
A Contrast-Guided Approach for the Enhancement of Low-Lighting Underwater Images
por: Porto Marques, Tunai, et al.
Publicado: (2019) -
A Novel Underwater Image Enhancement Using Optimal Composite Backbone Network
por: Chen, Yuhan, et al.
Publicado: (2023) -
Polarimetric image recovery method combining histogram stretching for underwater imaging
por: Li, Xiaobo, et al.
Publicado: (2018)