Cargando…

A New Tetracyclic Bromopyrrole-Imidazole Derivative through Direct Chemical Diversification of Substances Present in Natural Product Extract from Marine Sponge Petrosia (Strongylophora) sp.

Chemical diversification of substances present in natural product extracts can lead to a number of natural product-like compounds with a better chance of desirable bioactivities. The aim of this work was to discover unprecedented chemical conversion and produce new compounds through a one-step react...

Descripción completa

Detalles Bibliográficos
Autores principales: Sirimangkalakitti, Natchanun, Harada, Kazuo, Yamada, Makito, Arai, Masayoshi, Arisawa, Mitsuhiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821877/
https://www.ncbi.nlm.nih.gov/pubmed/36615336
http://dx.doi.org/10.3390/molecules28010143
Descripción
Sumario:Chemical diversification of substances present in natural product extracts can lead to a number of natural product-like compounds with a better chance of desirable bioactivities. The aim of this work was to discover unprecedented chemical conversion and produce new compounds through a one-step reaction of substances present in the extracts of marine sponges. In this report, a new unnatural tetracyclic bromopyrrole-imidazole derivative, rac-6-OEt-cylindradine A (1), was created from a chemically diversified extract of the sponge Petrosia (Strongylophora) sp. We also confirmed that 1 originated from naturally occurring (-)-cylindradine A (2) via a new reaction pattern. Moreover, (-)-dibromophakellin (3) and 4,5-dibromopyrrole-2-carboxylic acid (4), as well as 2, were reported herein for the first time in this genus. Studies on the possible reaction mechanism and bioactivities were also conducted. The results indicate that the direct chemical diversification of substances present in natural product extracts can be a speedy and useful strategy for the discovery of new compounds.