Cargando…
Protective Effects of Ferulic Acid on Metabolic Syndrome: A Comprehensive Review
Metabolic syndrome (MetS) is a complex disease in which protein, fat, carbohydrates and other substances are metabolized in a disorderly way. Ferulic acid (FA) is a phenolic acid found in many vegetables, fruits, cereals and Chinese herbs that has a strong effect on ameliorating MetS. However, no re...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821889/ https://www.ncbi.nlm.nih.gov/pubmed/36615475 http://dx.doi.org/10.3390/molecules28010281 |
Sumario: | Metabolic syndrome (MetS) is a complex disease in which protein, fat, carbohydrates and other substances are metabolized in a disorderly way. Ferulic acid (FA) is a phenolic acid found in many vegetables, fruits, cereals and Chinese herbs that has a strong effect on ameliorating MetS. However, no review has summarized the mechanisms of FA in treating MetS. This review collected articles related to the effects of FA on ameliorating the common symptoms of MetS, such as diabetes, hyperlipidemia, hypertension and obesity, from different sources involving Web of Science, PubMed and Google Scholar, etc. This review summarizes the potential mechanisms of FA in improving various metabolic disorders according to the collected articles. FA ameliorates diabetes via the inhibition of the expressions of PEPCK, G6Pase and GP, the upregulation of the expressions of GK and GS, and the activation of the PI3K/Akt/GLUT4 signaling pathway. The decrease of blood pressure is related to the endothelial function of the aortas and RAAS. The improvement of the lipid spectrum is mediated via the suppression of the HMG-Co A reductase, by promoting the ACSL1 expression and by the regulation of the factors associated with lipid metabolism. Furthermore, FA inhibits obesity by upregulating the MEK/ERK pathway, the MAPK pathway and the AMPK signaling pathway and by inhibiting SREBP-1 expression. This review can be helpful for the development of FA as an appreciable agent for MetS treatment. |
---|