Cargando…

Hot Isostatically Pressed Nano 3 mol% Yttria Partially Stabilised Zirconia: Effect on Mechanical Properties

Objective: To investigate the flexural strength of hot isostatically pressed nano 3 mol% yttria partially stabilised zirconia and conventionally sintered micro 3 mole% yttria partially stabilised zirconia. Methods: A total of 40 bar-shaped (2 mm × 4 mm × 16 mm) specimens were prepared from hot isost...

Descripción completa

Detalles Bibliográficos
Autores principales: Alsulimani, Osamah, Satterthwaite, Julian, Silikas, Nick
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821914/
https://www.ncbi.nlm.nih.gov/pubmed/36614678
http://dx.doi.org/10.3390/ma16010341
Descripción
Sumario:Objective: To investigate the flexural strength of hot isostatically pressed nano 3 mol% yttria partially stabilised zirconia and conventionally sintered micro 3 mole% yttria partially stabilised zirconia. Methods: A total of 40 bar-shaped (2 mm × 4 mm × 16 mm) specimens were prepared from hot isostatically pressed nano 3 mol% yttria partially stabilised zirconia (CeramaZirc Nano HIP, Precision Ceramics) and conventionally sintered micro 3 mole% yttria partially stabilised zirconia (CeramaZirc, Precision Ceramics). Two groups were prepared for each material (n = 10), with one serving as ‘control’ and the other being cyclically loaded using a chewing simulator (7 kg; 250 k cycles): SEM imaging was also undertaken on selected specimens. Flexural strength until fracture was recorded (ISO 6872). Paired and unpaired t-tests were chosen to compare mean outcomes between the four groups (p < 0.05). Results: Significant statistical difference was only found between the means of control specimens. CeramaZirc Nano HIP had the highest mean value (1048.9 MPa), whilst the lowest was seen for CeramaZirc after loading (770 MPa). Values for both materials were higher without loading than after loading. Values after cyclical loading showed large SD values (276.2–331.8) in comparison to ‘control’ (66.5–100.3). SEM imaging after cyclical loading revealed a smoother and less destructed surface of CeramaZirc Nano HIP compared to CeramaZirc. Significance: HIP nano zirconia exhibited inferior strength, surface polishability and behaviour to loading. Therefore, further investigation on the behaviour of such materials should be conducted before recommending for clinical use.