Cargando…
Prediction and Construction of Energetic Materials Based on Machine Learning Methods
Energetic materials (EMs) are the core materials of weapons and equipment. Achieving precise molecular design and efficient green synthesis of EMs has long been one of the primary concerns of researchers around the world. Traditionally, advanced materials were discovered through a trial-and-error pr...
Autores principales: | Zang, Xiaowei, Zhou, Xiang, Bian, Haitao, Jin, Weiping, Pan, Xuhai, Jiang, Juncheng, Koroleva, M. Yu., Shen, Ruiqi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821915/ https://www.ncbi.nlm.nih.gov/pubmed/36615516 http://dx.doi.org/10.3390/molecules28010322 |
Ejemplares similares
-
Applying machine learning techniques to predict the properties of energetic materials
por: Elton, Daniel C., et al.
Publicado: (2018) -
The Art of Framework Construction: Core–Shell Structured Micro-Energetic Materials
por: Duan, Binghui, et al.
Publicado: (2021) -
The prediction of distant metastasis risk for male breast cancer patients based on an interpretable machine learning model
por: Zhao, Xuhai, et al.
Publicado: (2023) -
Molecular design and properties of bridged energetic pyridines derivatives
por: Zhai, Diandian, et al.
Publicado: (2019) -
Synthesis, thermal behaviors, and energetic properties of asymmetrically substituted tetrazine-based energetic materials
por: Wang, Shenghui, et al.
Publicado: (2022)