Cargando…
Material Defects in Friction Stir Welding through Thermo–Mechanical Simulation: Dissimilar Materials with Tool Wear Consideration
Despite the remarkable capabilities of friction stir welding (FSW) in joining dissimilar materials, the numerical simulation of FSW is predominantly limited to the joining of similar materials. The material mixing and defects’ prediction in FSW of dissimilar materials through numerical simulation ha...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821955/ https://www.ncbi.nlm.nih.gov/pubmed/36614639 http://dx.doi.org/10.3390/ma16010301 |
Sumario: | Despite the remarkable capabilities of friction stir welding (FSW) in joining dissimilar materials, the numerical simulation of FSW is predominantly limited to the joining of similar materials. The material mixing and defects’ prediction in FSW of dissimilar materials through numerical simulation have not been thoroughly studied. The role of progressive tool wear is another aspect of practical importance that has not received due consideration in numerical simulation. As such, we contribute to the body of knowledge with a numerical study of FSW of dissimilar materials in the context of defect prediction and tool wear. We numerically simulated material mixing and defects (surface and subsurface tunnel, exit hole, and flash formation) using a coupled Eulerian–Lagrangian approach. The model predictions are validated with the experimental results on FSW of the candidate pair AA6061 and AZ31B. The influence of tool wear on tool dimensions is experimentally investigated for several sets of tool rotations and traverse speeds and incorporated in the numerical simulation to predict the weld defects. The developed model successfully predicted subsurface tunnel defects, surface tunnels, excessive flash formations, and exit holes with a maximum deviation of 1.2 mm. The simulation revealed the substantial impact of the plate position, on either the advancing or retreating side, on the defect formation; for instance, when AZ31B was placed on the AS, the surface tunnel reached about 50% of the workpiece thickness. The numerical model successfully captured defect formation due to the wear-induced changes in tool dimensions, e.g., the pin length decreased up to 30% after welding at higher tool rotations and traverse speeds, leading to surface tunnel defects. |
---|