Cargando…
In Silico Identification of Anti-SARS-CoV-2 Medicinal Plants Using Cheminformatics and Machine Learning
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative pathogen of COVID-19, is spreading rapidly and has caused hundreds of millions of infections and millions of deaths worldwide. Due to the lack of specific vaccines and effective treatments for COVID-19, there is an urgent ne...
Autores principales: | Liang, Jihao, Zheng, Yang, Tong, Xin, Yang, Naixue, Dai, Shaoxing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821958/ https://www.ncbi.nlm.nih.gov/pubmed/36615401 http://dx.doi.org/10.3390/molecules28010208 |
Ejemplares similares
-
Novel applications of Machine Learning in cheminformatics
por: Spjuth, Ola
Publicado: (2018) -
Cheminformatics-Based Identification of Potential Novel Anti-SARS-CoV-2 Natural Compounds of African Origin
por: Kwofie, Samuel K., et al.
Publicado: (2021) -
Cheminformatics-Based Anticoagulant Study of Traditionally Used Medicinal Plants
por: Pour, Mahdi Alikhani, et al.
Publicado: (2017) -
Learning cheminformatics
por: Guha, Rajarshi, et al.
Publicado: (2020) -
Exploiting cheminformatic and machine learning to navigate the available chemical space of potential small molecule inhibitors of SARS-CoV-2
por: Kumar, Abhinit, et al.
Publicado: (2020)