Cargando…
Electrically Polarized Withaferin A and Alginate-Incorporated Biphasic Calcium Phosphate Microspheres Exhibit Osteogenicity and Antibacterial Activity In Vitro
Biphasic calcium phosphate microspheres were synthesized by the water on oil emulsion method and, subsequently, withaferin A was incorporated in the microspheres to evaluate their efficacy in biomedical applications. These withaferin A and alginate-incorporated biphasic calcium phosphate (BCP-WFA-AL...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821985/ https://www.ncbi.nlm.nih.gov/pubmed/36615281 http://dx.doi.org/10.3390/molecules28010086 |
Sumario: | Biphasic calcium phosphate microspheres were synthesized by the water on oil emulsion method and, subsequently, withaferin A was incorporated in the microspheres to evaluate their efficacy in biomedical applications. These withaferin A and alginate-incorporated biphasic calcium phosphate (BCP-WFA-ALG) microspheres were then negatively polarized, and the formation of biphasic calcium phosphates was validated by X-ray diffraction study. Although the TSDC measurement of the BCP-WFA-ALG microspheres showed the highest current density of 5.37 nA/cm(2), the contact angle of the specimen was found to be lower than the control BCP microspheres in all the media. The water uptake into BCP-WFA-ALG microspheres was significantly higher than in the pure BCP microspheres. MTT assay results showed that there was a significant enhancement in cell proliferation rate with the BCP-WFA-ALG composite microspheres. The osteogenic differentiation of MG 63 cells on BCP-WFA-ALG microspheres exhibited an increased expression of osteogenic marker genes in the case of the BCP-WFA-ALG composite microspheres. |
---|