Cargando…

Large-Scale Model Test on Water Pressure Resistance of Lining Structure of Water-Rich Tunnel

In order to solve the problem of testing the water pressure resistance of lining structures of water-rich tunnels and the difficulty of implementing the existing model tests, a large-scale model test method was proposed relying on the New Yuanliangshan Tunnel threatened by high pressure and rich wat...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Mingli, Huang, Meng, Yang, Ze
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821993/
https://www.ncbi.nlm.nih.gov/pubmed/36614780
http://dx.doi.org/10.3390/ma16010440
Descripción
Sumario:In order to solve the problem of testing the water pressure resistance of lining structures of water-rich tunnels and the difficulty of implementing the existing model tests, a large-scale model test method was proposed relying on the New Yuanliangshan Tunnel threatened by high pressure and rich water. This method creatively transformed the external water pressure of the lining structure into internal water pressure, and the conversion coefficient of water resistance of lining under different sizes and loading modes was obtained by numerical calculation. Results showed that the ultimate water pressure resistance of the lining structure under an external uniformly distributed water pressure and local water pressure was 1.44 and 0.67 times of that obtained from the large-scale model tests, respectively. By conducting the large-scale model tests and combining with the conversion coefficient, the water pressure resistance of the actual tunnel lining could be obtained. Research indicated that water pressure resistance of K2.0 (bearing water pressure of 2.0 MPa) type lining at the transition section of karst caves and K3.0 (bearing water pressure of 3.0 MPa) type lining at the section of karst caves of the New Yuanliangshan Tunnel was 3.33 MPa and not less than 4.36 MPa, respectively, and the high reliability of the large-scale model tests was verified by numerical calculation, implying that the model test method could be extended to similar tunnel projects.