Cargando…
Integrating unsupervised language model with triplet neural networks for protein gene ontology prediction
Accurate identification of protein function is critical to elucidate life mechanisms and design new drugs. We proposed a novel deep-learning method, ATGO, to predict Gene Ontology (GO) attributes of proteins through a triplet neural-network architecture embedded with pre-trained language models from...
Autores principales: | Zhu, Yi-Heng, Zhang, Chengxin, Yu, Dong-Jun, Zhang, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9822105/ https://www.ncbi.nlm.nih.gov/pubmed/36548439 http://dx.doi.org/10.1371/journal.pcbi.1010793 |
Ejemplares similares
-
TripletGO: Integrating Transcript Expression Profiles with Protein Homology Inferences for Gene Function Prediction
por: Zhu, Yi-Heng, et al.
Publicado: (2022) -
Matching sensor ontologies with unsupervised neural network with competitive learning
por: Xue, Xingsi, et al.
Publicado: (2021) -
Obol: Integrating Language and Meaning in Bio-Ontologies
por: Mungall, Christopher J.
Publicado: (2004) -
Predicting metabolic pathway membership with deep neural networks by integrating sequential and ontology information
por: Cartealy, Imam, et al.
Publicado: (2021) -
Deducing high-accuracy protein contact-maps from a triplet of coevolutionary matrices through deep residual convolutional networks
por: Li, Yang, et al.
Publicado: (2021)