Cargando…

The Studies on Gallium Nitride-Based Materials: A Bibliometric Analysis

Gallium nitride (GaN) has a wide energy band gap and a high power density, efficiency, switching frequency, and electron carrier mobility, having broad applications in digitization. Because GaN has high potentials, this study performed a bibliometric analysis on the publications of GaN indexed in th...

Descripción completa

Detalles Bibliográficos
Autores principales: Lam, Weng Hoe, Lam, Weng Siew, Lee, Pei Fun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9822161/
https://www.ncbi.nlm.nih.gov/pubmed/36614740
http://dx.doi.org/10.3390/ma16010401
Descripción
Sumario:Gallium nitride (GaN) has a wide energy band gap and a high power density, efficiency, switching frequency, and electron carrier mobility, having broad applications in digitization. Because GaN has high potentials, this study performed a bibliometric analysis on the publications of GaN indexed in the Web of Science database from 1970 to 2023. A performance analysis of the 15,634 publications was performed using Harzing’s Publish or Perish tool, while science mappings were performed with VOSviewer software. The results show that there has been an uptrend in the on-going research on GaN, especially in the past decade. Most of the documents are within the fields of physics, engineering, and materials science. The United States has the highest number of publications and the most impactful research. The United States is also actively collaborating with other countries to gain deeper insights into GaN. The analysis shows that the concentration of GaN research is slowly moving towards the development of high-voltage operations.