Cargando…

Silica Immobilised Chloro- and Amido-Derivatives of Eremomycine as Chiral Stationary Phases for the Enantioseparation of Amino Acids by Reversed-Phase Liquid Chromatography

Macrocyclic glycopeptide antibiotics immobilized on silica are one of the effective classes of stationary phases for chiral recognition and HPLC separation of a wide range of optically active compounds. Enantioselectivity primarily depends on the chemical structure of the chiral ligand, immobilizati...

Descripción completa

Detalles Bibliográficos
Autores principales: Sarvin, Nikita, Puzankov, Ruslan, Vasiyarov, Georgii, Nesterenko, Pavel N., Staroverov, Sergey M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9822235/
https://www.ncbi.nlm.nih.gov/pubmed/36615283
http://dx.doi.org/10.3390/molecules28010085
_version_ 1784865896129363968
author Sarvin, Nikita
Puzankov, Ruslan
Vasiyarov, Georgii
Nesterenko, Pavel N.
Staroverov, Sergey M.
author_facet Sarvin, Nikita
Puzankov, Ruslan
Vasiyarov, Georgii
Nesterenko, Pavel N.
Staroverov, Sergey M.
author_sort Sarvin, Nikita
collection PubMed
description Macrocyclic glycopeptide antibiotics immobilized on silica are one of the effective classes of stationary phases for chiral recognition and HPLC separation of a wide range of optically active compounds. Enantioselectivity primarily depends on the chemical structure of the chiral ligand, immobilization chemistry, and separation conditions. In the present work, three new chiral stationary phases (CSPs) based on macrocyclic antibiotic eremomycin were prepared and investigated for enantioseparation of amino acids. Two eremomycin derivatives, including simple non-substituted amide and bulky adamantyl amide, provided important information on the role of the carboxylic group in the eremomycin structure in the chiral recognition mechanism concerning amino acid optical isomers. One more CSP having a chlorine atom in the same position elucidates the role of the first aromatic ring in the eremomycin structure as a crucial point for chiral recognition. CSP with immobilized chloreremomycin was the most successful among the phases prepared in this work. It was additionally investigated under various separation conditions, including the type and content of the organic solvent in the eluent, the effects of different additives, and the concentration and pH of the buffer. Importantly, an efficient enantioselective separation of amino acids was achieved with pure water as the eluent.
format Online
Article
Text
id pubmed-9822235
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-98222352023-01-07 Silica Immobilised Chloro- and Amido-Derivatives of Eremomycine as Chiral Stationary Phases for the Enantioseparation of Amino Acids by Reversed-Phase Liquid Chromatography Sarvin, Nikita Puzankov, Ruslan Vasiyarov, Georgii Nesterenko, Pavel N. Staroverov, Sergey M. Molecules Article Macrocyclic glycopeptide antibiotics immobilized on silica are one of the effective classes of stationary phases for chiral recognition and HPLC separation of a wide range of optically active compounds. Enantioselectivity primarily depends on the chemical structure of the chiral ligand, immobilization chemistry, and separation conditions. In the present work, three new chiral stationary phases (CSPs) based on macrocyclic antibiotic eremomycin were prepared and investigated for enantioseparation of amino acids. Two eremomycin derivatives, including simple non-substituted amide and bulky adamantyl amide, provided important information on the role of the carboxylic group in the eremomycin structure in the chiral recognition mechanism concerning amino acid optical isomers. One more CSP having a chlorine atom in the same position elucidates the role of the first aromatic ring in the eremomycin structure as a crucial point for chiral recognition. CSP with immobilized chloreremomycin was the most successful among the phases prepared in this work. It was additionally investigated under various separation conditions, including the type and content of the organic solvent in the eluent, the effects of different additives, and the concentration and pH of the buffer. Importantly, an efficient enantioselective separation of amino acids was achieved with pure water as the eluent. MDPI 2022-12-22 /pmc/articles/PMC9822235/ /pubmed/36615283 http://dx.doi.org/10.3390/molecules28010085 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Sarvin, Nikita
Puzankov, Ruslan
Vasiyarov, Georgii
Nesterenko, Pavel N.
Staroverov, Sergey M.
Silica Immobilised Chloro- and Amido-Derivatives of Eremomycine as Chiral Stationary Phases for the Enantioseparation of Amino Acids by Reversed-Phase Liquid Chromatography
title Silica Immobilised Chloro- and Amido-Derivatives of Eremomycine as Chiral Stationary Phases for the Enantioseparation of Amino Acids by Reversed-Phase Liquid Chromatography
title_full Silica Immobilised Chloro- and Amido-Derivatives of Eremomycine as Chiral Stationary Phases for the Enantioseparation of Amino Acids by Reversed-Phase Liquid Chromatography
title_fullStr Silica Immobilised Chloro- and Amido-Derivatives of Eremomycine as Chiral Stationary Phases for the Enantioseparation of Amino Acids by Reversed-Phase Liquid Chromatography
title_full_unstemmed Silica Immobilised Chloro- and Amido-Derivatives of Eremomycine as Chiral Stationary Phases for the Enantioseparation of Amino Acids by Reversed-Phase Liquid Chromatography
title_short Silica Immobilised Chloro- and Amido-Derivatives of Eremomycine as Chiral Stationary Phases for the Enantioseparation of Amino Acids by Reversed-Phase Liquid Chromatography
title_sort silica immobilised chloro- and amido-derivatives of eremomycine as chiral stationary phases for the enantioseparation of amino acids by reversed-phase liquid chromatography
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9822235/
https://www.ncbi.nlm.nih.gov/pubmed/36615283
http://dx.doi.org/10.3390/molecules28010085
work_keys_str_mv AT sarvinnikita silicaimmobilisedchloroandamidoderivativesoferemomycineaschiralstationaryphasesfortheenantioseparationofaminoacidsbyreversedphaseliquidchromatography
AT puzankovruslan silicaimmobilisedchloroandamidoderivativesoferemomycineaschiralstationaryphasesfortheenantioseparationofaminoacidsbyreversedphaseliquidchromatography
AT vasiyarovgeorgii silicaimmobilisedchloroandamidoderivativesoferemomycineaschiralstationaryphasesfortheenantioseparationofaminoacidsbyreversedphaseliquidchromatography
AT nesterenkopaveln silicaimmobilisedchloroandamidoderivativesoferemomycineaschiralstationaryphasesfortheenantioseparationofaminoacidsbyreversedphaseliquidchromatography
AT staroverovsergeym silicaimmobilisedchloroandamidoderivativesoferemomycineaschiralstationaryphasesfortheenantioseparationofaminoacidsbyreversedphaseliquidchromatography