Cargando…
Hybrid Data-Driven Deep Learning Framework for Material Mechanical Properties Prediction with the Focus on Dual-Phase Steel Microstructures
A comprehensive approach to understand the mechanical behavior of materials involves costly and time-consuming experiments. Recent advances in machine learning and in the field of computational material science could significantly reduce the need for experiments by enabling the prediction of a mater...
Autores principales: | Cheloee Darabi, Ali, Rastgordani, Shima, Khoshbin, Mohammadreza, Guski, Vinzenz, Schmauder, Siegfried |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9822330/ https://www.ncbi.nlm.nih.gov/pubmed/36614791 http://dx.doi.org/10.3390/ma16010447 |
Ejemplares similares
-
Deformation Behavior Investigation of Auxetic Structure Made of Poly(butylene adipate-co-terephthalate) Biopolymers Using Finite Element Method
por: Schneider, Yanling, et al.
Publicado: (2023) -
Investigation of Auxetic Structural Deformation Behavior of PBAT Polymers Using Process and Finite Element Simulation
por: Schneider, Yanling, et al.
Publicado: (2023) -
FEM Simulations of Fatigue Crack Initiation in the Oligocrystalline Microstructure of Stents
por: Lasko, Galina, et al.
Publicado: (2023) -
Effect of solidification rate on microstructure evolution in dual phase microalloyed steel
por: Kostryzhev, A. G., et al.
Publicado: (2016) -
Microstructural
Modeling and Simulation of a Carbon
Black-Based Conductive Polymer—A Template for the Virtual Design
of a Composite Material
por: Wang, Yuanzhen, et al.
Publicado: (2022)