Cargando…
Expression and Molecular Modification of Chitin Deacetylase from Streptomyces bacillaris
Chitin deacetylase can be used in the green and efficient preparation of chitosan from chitin. Herein, a novel chitin deacetylase SbCDA from Streptomyces bacillaris was heterologously expressed and comprehensively characterized. SbDNA exhibits its highest deacetylation activity at 35 °C and pH 8.0....
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9822392/ https://www.ncbi.nlm.nih.gov/pubmed/36615307 http://dx.doi.org/10.3390/molecules28010113 |
Sumario: | Chitin deacetylase can be used in the green and efficient preparation of chitosan from chitin. Herein, a novel chitin deacetylase SbCDA from Streptomyces bacillaris was heterologously expressed and comprehensively characterized. SbDNA exhibits its highest deacetylation activity at 35 °C and pH 8.0. The enzyme activity is enhanced by Mn(2+) and prominently inhibited by Zn(2+), SDS, and EDTA. SbCDA showed better deacetylation activity on colloidal chitin, (GlcNAc)(5), and (GlcNAc)(6) than other forms of the substrate. Molecular modification of SbCDA was conducted based on sequence alignment and homology modeling. A mutant SbCDA63G with higher activity and better temperature stability was obtained. The deacetylation activity of SbCDA63G was increased by 133% compared with the original enzyme, and the optimal reaction temperature increased from 35 to 40 °C. The half-life of SbCDA63G at 40 °C is 15 h, which was 5 h longer than that of the original enzyme. The improved characteristics of the chitin deacetylase SbCDA63G make it a potential candidate to industrially produce chitosan from chitin. |
---|