Cargando…
Bridges and Vertices in Heteroboranes
A number of (hetero)boranes are known in which a main group atom X ‘bridges’ a B—B connectivity in the open face, and in such species X has previously been described as simply a bridge or, alternatively, as a vertex in a larger cluster. In this study we describe an approach to distinguish between th...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9822511/ https://www.ncbi.nlm.nih.gov/pubmed/36615384 http://dx.doi.org/10.3390/molecules28010190 |
Sumario: | A number of (hetero)boranes are known in which a main group atom X ‘bridges’ a B—B connectivity in the open face, and in such species X has previously been described as simply a bridge or, alternatively, as a vertex in a larger cluster. In this study we describe an approach to distinguish between these options based on identifying the best fit of the experimental {B(x)} cluster fragment with alternate exemplar {B(x)} fragments derived from DFT-optimized [B(n)H(n)](2−) models. In most of the examples studied atom X is found to be better regarded as a vertex, having ‘a ‘verticity’ of ca. 60–65%. Consideration of our results leads to the suggestion that the radial electron contribution from X to the overall skeletal electron count is more significant than the tangential contribution. |
---|