Cargando…
Omega-3 polyunsaturated fatty acids ameliorate PM2.5 exposure induced lung injury in mice through remodeling the gut microbiota and modulating the lung metabolism
Short-term or long-term exposure to fine particulate matter (PM2.5) is related to increased incidences of respiratory diseases. This study aimed to investigate the influences of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) supplementation on oxidative stress, inflammation, lung metabolic profile,...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9822699/ https://www.ncbi.nlm.nih.gov/pubmed/36609968 http://dx.doi.org/10.1007/s11356-022-25111-0 |
Sumario: | Short-term or long-term exposure to fine particulate matter (PM2.5) is related to increased incidences of respiratory diseases. This study aimed to investigate the influences of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) supplementation on oxidative stress, inflammation, lung metabolic profile, and gut microbiota in PM2.5-induced lung injury mice. Mice were divided into four groups (n = 15, per group): two unsupplemented groups, control group and PM2.5 group, and two supplemented groups with ω-3 PUFAs, ω-3 PUFAs group, and ω-3 PUFAs + PM2.5 group. Mice in the supplemented groups were placed on an ω-3 PUFAs-enriched diet (ω-3 PUFAs, 21 g/kg). During the 5th to 6th week of dietary supplementation, mice were exposed to PM2.5 by intra-tracheal instillation. ω-3 PUFAs ameliorate lung histopathological injury, reduce inflammatory responses and oxidative stress, affect lung metabolite profile, and modulate gut microbiota in PM2.5-induced lung injury mice. Thus, supplementary ω-3 PUFAs showed effectiveness in attenuation of PM2.5-induced lung injury, indicating that the interventions exhibited preventive and therapeutic potential. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11356-022-25111-0. |
---|