Cargando…
Double-branch feature fusion transformer for hyperspectral image classification
Deep learning methods, particularly Convolutional Neural Network (CNN), have been widely used in hyperspectral image (HSI) classification. CNN can achieve outstanding performance in the field of HSI classification due to its advantages of fully extracting local contextual features of HSI. However, C...
Autores principales: | Dang, Lanxue, Weng, Libo, Hou, Yane, Zuo, Xianyu, Liu, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9822916/ https://www.ncbi.nlm.nih.gov/pubmed/36609624 http://dx.doi.org/10.1038/s41598-023-27472-z |
Ejemplares similares
-
Spectral-Spatial Attention Transformer with Dense Connection for Hyperspectral Image Classification
por: Dang, Lanxue, et al.
Publicado: (2022) -
Dual-Path Residual “Shrinkage” Network for Side-Scan Sonar Image Classification
por: Ruan, Fengxue, et al.
Publicado: (2022) -
HMFT: Hyperspectral and Multispectral Image Fusion Super-Resolution Method Based on Efficient Transformer and Spatial-Spectral Attention Mechanism
por: Qiao, Baojun, et al.
Publicado: (2023) -
Asymmetric coordinate attention spectral-spatial feature fusion network for hyperspectral image classification
por: Cheng, Shuli, et al.
Publicado: (2021) -
Exact and Metaheuristic Approaches for a Bi-Objective School Bus Scheduling Problem
por: Chen, Xiaopan, et al.
Publicado: (2015)