Cargando…
Analysis of wearable time series data in endocrine and metabolic research
Many hormones in the body oscillate with different frequencies and amplitudes, creating a dynamic environment that is essential to maintain health. In humans, disruptions to these rhythms are strongly associated with increased morbidity and mortality. While mathematical models can help us understand...
Autores principales: | Grant, Azure D., Upton, Thomas J., Terry, John R., Smarr, Benjamin L., Zavala, Eder |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823090/ https://www.ncbi.nlm.nih.gov/pubmed/36632470 http://dx.doi.org/10.1016/j.coemr.2022.100380 |
Ejemplares similares
-
Feasibility of continuous distal body temperature for passive, early pregnancy detection
por: Grant, Azure, et al.
Publicado: (2022) -
Maternal and Early-Life Circadian Disruption Have Long-Lasting Negative Consequences on Offspring Development and Adult Behavior in Mice
por: Smarr, Benjamin L., et al.
Publicado: (2017) -
Sex differences in variability across timescales in BALB/c mice
por: Smarr, Benjamin L., et al.
Publicado: (2017) -
Binned Data Provide Better Imputation of Missing Time Series Data from Wearables
por: Chakrabarti, Shweta, et al.
Publicado: (2023) -
Mathematical Modelling of Endocrine Systems
por: Zavala, Eder, et al.
Publicado: (2019)