Cargando…

A new extended single-switch high gain DC–DC boost converter for renewable energy applications

High-gain DC/DC converters are considered one of the most important components of green energy systems. Large numbers of these converters are used for increasing the voltage gain by using an extreme duty cycle. However, it increases losses and the cost, degrades the system performance, and hence obt...

Descripción completa

Detalles Bibliográficos
Autores principales: Mansour, Arafa S., Zaky, Mohamed S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823105/
https://www.ncbi.nlm.nih.gov/pubmed/36609658
http://dx.doi.org/10.1038/s41598-022-26660-7
Descripción
Sumario:High-gain DC/DC converters are considered one of the most important components of green energy systems. Large numbers of these converters are used for increasing the voltage gain by using an extreme duty cycle. However, it increases losses and the cost, degrades the system performance, and hence obtains a low efficiency. In this article, a new design of a high-gain DC/DC boost converter is proposed. This converter has the potential to be used in low input voltage applications that need a high voltage gain such as systems powered by solar photovoltaic panels and fuel cells. The new topology is characterized by its simplicity of operation, high voltage gain, better efficiency, continuity of the input current, reduced number of inductors and capacitors, and can be extended to get higher gains. The converter structure, principle of operation, and design consideration of inductors and capacitors are presented in detail. Derivation of power losses and efficiency is presented. A laboratory prototype is implemented, and various experimental tests are given. The achievement of the suggested design is confirmed and compared with other recent high-gain converters.