Cargando…
Numerical data on fire in the cavity of naturally ventilated double skin façade with Venetian blinds
This Data Article presents simulation data and methodology on fire in the cavity of naturally ventilated Double Skin Façade (DSF) with Venetian blinds. The simulation data includes glazing surface temperature data and the Input and Output Source Code files. The data for the validation of the model i...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823162/ https://www.ncbi.nlm.nih.gov/pubmed/36624771 http://dx.doi.org/10.1016/j.dib.2022.108859 |
Sumario: | This Data Article presents simulation data and methodology on fire in the cavity of naturally ventilated Double Skin Façade (DSF) with Venetian blinds. The simulation data includes glazing surface temperature data and the Input and Output Source Code files. The data for the validation of the model is also presented along with its methodology, input source code file and output temperature results. The comprehensive methodology used to obtain this data from the National Institute of Standards and Technology's (NIST) Fire Dynamics Simulator (FDS) and PyroSim are presented. The data presented can provide theoretical benchmarks for architects, engineers, researchers, and designers when incorporating Venetian blinds in DSFs. It can also help fire fighters and engineers to theoretically assess the spread of fire in buildings with DSFs incorporating Venetian blinds. |
---|