Cargando…

Secondary Metabolites from Aspergillus sparsus NBERC_28952 and Their Herbicidal Activities

Fungi have been used in the production of a wide range of biologically active metabolites, including potent herbicides. In the search for pesticides of natural origin, Aspergillus sparsus NBERC_28952, a fungal strain with herbicidal activity, was obtained. Chemical study of secondary metabolites fro...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Zhaoyuan, Liu, Fang, Ke, Shaoyong, Zhang, Zhigang, Hu, Hongtao, Fang, Wei, Xiao, Shaoyujia, Zhang, Yani, Wang, Yueying, Wang, Kaimei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823327/
https://www.ncbi.nlm.nih.gov/pubmed/36616333
http://dx.doi.org/10.3390/plants12010203
Descripción
Sumario:Fungi have been used in the production of a wide range of biologically active metabolites, including potent herbicides. In the search for pesticides of natural origin, Aspergillus sparsus NBERC_28952, a fungal strain with herbicidal activity, was obtained. Chemical study of secondary metabolites from NBERC_28952 resulted in the isolation of three new asperugin analogues, named Aspersparin A–C (2–4), and a new azaphilone derivative, named Aspersparin D (5), together with two known compounds, Asperugin B (1) and sydonic acid (6). The structures of these compounds were elucidated based on extensive spectroscopic data and single-crystal X-ray diffraction analysis. All of the isolated compounds were evaluated for their herbicidal activities on seedlings of Echinochloa crusgalli and Amaranthus retroflexus through Petri dish bioassays. Among them, compounds 5 and 6 exhibited moderate inhibitory activities against the growth of the roots and shoots of E. crusgalli seedlings in a dose-dependent manner, while 6 showed obvious inhibitory effect on seedlings of A. retroflexus, with an inhibitory rate of 78.34% at a concentration of 200 μg/mL. These herbicidal metabolites represent a new source of compounds to control weeds.