Cargando…
A Method of Noise Reduction for Radio Communication Signal Based on RaGAN
Radio signals are polluted by noise in the process of channel transmission, which will lead to signal distortion. Noise reduction of radio signals is an effective means to eliminate the impact of noise. Using deep learning (DL) to denoise signals can reduce the dependence on artificial domain knowle...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823341/ https://www.ncbi.nlm.nih.gov/pubmed/36617068 http://dx.doi.org/10.3390/s23010475 |
Sumario: | Radio signals are polluted by noise in the process of channel transmission, which will lead to signal distortion. Noise reduction of radio signals is an effective means to eliminate the impact of noise. Using deep learning (DL) to denoise signals can reduce the dependence on artificial domain knowledge, while traditional signal-processing-based denoising methods often require knowledge of the artificial domain. Aiming at the problem of noise reduction of radio communication signals, a radio communication signal denoising method based on the relativistic average generative adversarial networks (RaGAN) is proposed in this paper. This method combines the bidirectional long short-term memory (Bi-LSTM) model, which is good at processing time-series data with RaGAN, and uses the weighted loss function to construct a noise reduction model suitable for radio communication signals, which realizes the end-to-end denoising of radio signals. The experimental results show that, compared with the existing methods, the proposed algorithm has significantly improved the noise reduction effect. In the case of a low signal-to-noise ratio (SNR), the signal modulation recognition accuracy is improved by about 10% after noise reduction. |
---|