Cargando…
Improved Drill State Recognition during Milling Process Using Artificial Intelligence
In this article, an automated method for tool condition monitoring is presented. When producing items in large quantities, pointing out the exact time when the element needs to be exchanged is crucial. If performed too early, the operator gets rid of a good drill, also resulting in production downti...
Autores principales: | Kurek, Jarosław, Krupa, Artur, Antoniuk, Izabella, Akhmet, Arlan, Abdiomar, Ulan, Bukowski, Michał, Szymanowski, Karol |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823354/ https://www.ncbi.nlm.nih.gov/pubmed/36617050 http://dx.doi.org/10.3390/s23010448 |
Ejemplares similares
-
Application of Siamese Networks to the Recognition of the Drill Wear State Based on Images of Drilled Holes
por: Kurek, Jarosław, et al.
Publicado: (2020) -
Advanced Feature Extraction Methods from Images of Drillings in Melamine Faced Chipboard for Automatic Diagnosis of Drill Wear
por: Antoniuk, Izabella, et al.
Publicado: (2023) -
Application of Machine Learning Algorithms for Tool Condition Monitoring in Milling Chipboard Process
por: Przybyś-Małaczek, Agata, et al.
Publicado: (2023) -
Decision Confidence Assessment in Multi-Class Classification
por: Bukowski, Michał, et al.
Publicado: (2021) -
Micro-EDM Drilling/Milling as a Potential Technique for Fabrication of Bespoke Artificial Defects on Bearing Raceways
por: Ye, Long, et al.
Publicado: (2022)