Cargando…

Nanorod-like Structure of ZnO Nanoparticles and Zn(8)O(8) Clusters Using 4-Dimethylamino Benzaldehyde Liquid to Study the Physicochemical and Antimicrobial Properties of Pathogenic Bacteria

To study their physicochemical and antimicrobial properties, zinc oxide nanoparticles were synthesized using a simple chemical route and 4-dimethylaminobenzaldehyde (4DB) as an organic additive. ZnO nanoparticles were characterized with XRD analysis, which confirmed the presence of a hexagonal wurtz...

Descripción completa

Detalles Bibliográficos
Autores principales: Ramesh, Sivalingam, Karthikeyan, C., Hajahameed, A. S., Afsar, N., Sivasamy, Arumugam, Lee, Young-Jun, Kim, Joo-Hyung, Kim, Heung Soo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823362/
https://www.ncbi.nlm.nih.gov/pubmed/36616076
http://dx.doi.org/10.3390/nano13010166
Descripción
Sumario:To study their physicochemical and antimicrobial properties, zinc oxide nanoparticles were synthesized using a simple chemical route and 4-dimethylaminobenzaldehyde (4DB) as an organic additive. ZnO nanoparticles were characterized with XRD analysis, which confirmed the presence of a hexagonal wurtzite structure with different crystalline sizes. The SEM morphology of the synthesized nanoparticles confirmed the presence of nanorods in both modifications of ZnO nanoparticles. EDS analysis proved the chemical composition of the synthesized samples via different chemical approaches. In addition, the optical absorption results indicated that the use of 4DB increased the band gap energy of the synthesized nanoparticles. The synthesized Zn(8)O(8) and Zn(8)O(8):4DB clusters were subjected to HOMO–LUMO analysis, and their ionization energy (I), electron affinity (A), global hardness (η), chemical potential (σ), global electrophilicity index (ω), dipole moment (μ), polarizability (α(tot)), first-order hyperpolarizability (β(tot)), and other thermodynamic properties were determined. Furthermore, the antimicrobial properties of the ZnO nanoparticles were studied against G+ (S. aureus and B. subtilis) and G− (K. pneumoniae and E. coli) bacteria in a nutrient agar according to guidelines of the Clinical and Laboratory Standards Institute (CLSI).