Cargando…
End-to-End Model-Based Detection of Infants with Autism Spectrum Disorder Using a Pretrained Model
In this paper, we propose an end-to-end (E2E) neural network model to detect autism spectrum disorder (ASD) from children’s voices without explicitly extracting the deterministic features. In order to obtain the decisions for discriminating between the voices of children with ASD and those with typi...
Autores principales: | Lee, Jung Hyuk, Lee, Geon Woo, Bong, Guiyoung, Yoo, Hee Jeong, Kim, Hong Kook |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823402/ https://www.ncbi.nlm.nih.gov/pubmed/36616801 http://dx.doi.org/10.3390/s23010202 |
Ejemplares similares
-
Deep-Learning-Based Detection of Infants with Autism Spectrum Disorder Using Auto-Encoder Feature Representation
por: Lee, Jung Hyuk, et al.
Publicado: (2020) -
Patterns of Restricted and Repetitive Behaviors in Toddlers and Young Children with Autism Spectrum Disorder
por: Song, Da-Yea, et al.
Publicado: (2022) -
Loss of Acquired Skills: Regression in Young Children With Autism Spectrum Disorders
por: Kim, Ye Rim, et al.
Publicado: (2023) -
Clinical characteristics of comorbid tic disorders in autism spectrum disorder: exploratory analysis
por: Kim, Ye Rim, et al.
Publicado: (2023) -
The Use of Artificial Intelligence in Screening and Diagnosis of Autism Spectrum Disorder: A Literature Review
por: Song, Da-Yea, et al.
Publicado: (2019)