Cargando…
Primary Root Excision Induces ERF071, Which Mediates the Development of Lateral Roots in Makapuno Coconut (Cocos nucifera)
Coconut (Cocos nucifera L.) is widely recognized as one of nature’s most beneficial plants. Makapuno, a special type of coconut with a soft, jelly-like endosperm, is a high-value commercial coconut and an expensive delicacy with a high cost of planting material. The embryo rescue technique is a very...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823405/ https://www.ncbi.nlm.nih.gov/pubmed/36616233 http://dx.doi.org/10.3390/plants12010105 |
_version_ | 1784866151525777408 |
---|---|
author | Thuzar, Mya Sae-lee, Yonlada Saensuk, Chatree Pitaloka, Mutiara K. Dechkrong, Punyavee Aesomnuk, Wanchana Ruanjaichon, Vinitchan Wanchana, Samart Arikit, Siwaret |
author_facet | Thuzar, Mya Sae-lee, Yonlada Saensuk, Chatree Pitaloka, Mutiara K. Dechkrong, Punyavee Aesomnuk, Wanchana Ruanjaichon, Vinitchan Wanchana, Samart Arikit, Siwaret |
author_sort | Thuzar, Mya |
collection | PubMed |
description | Coconut (Cocos nucifera L.) is widely recognized as one of nature’s most beneficial plants. Makapuno, a special type of coconut with a soft, jelly-like endosperm, is a high-value commercial coconut and an expensive delicacy with a high cost of planting material. The embryo rescue technique is a very useful tool to support mass propagation of makapuno coconut. Nevertheless, transplanting the seedlings is a challenge due to poor root development, which results in the inability of the plant to acclimatize. In this study, primary root excision was used in makapuno to observe the effects of primary root excision on lateral root development. The overall results showed that seedlings with roots excised had a significantly higher number of lateral roots, and shoot length also increased significantly. Using de novo transcriptome assembly and differential gene expression analysis, we identified 512 differentially expressed genes in the excised and intact root samples. ERF071, encoding an ethylene-responsive transcription factor, was identified as a highly expressed gene in excised roots compared to intact roots, and was considered a candidate gene associated with lateral root formation induced by root excision in makapuno coconut. This study provides insight into the mechanism and candidate genes involved in the development of lateral roots in coconut, which may be useful for the future breeding and mass propagation of makapuno coconut through tissue culture. |
format | Online Article Text |
id | pubmed-9823405 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98234052023-01-08 Primary Root Excision Induces ERF071, Which Mediates the Development of Lateral Roots in Makapuno Coconut (Cocos nucifera) Thuzar, Mya Sae-lee, Yonlada Saensuk, Chatree Pitaloka, Mutiara K. Dechkrong, Punyavee Aesomnuk, Wanchana Ruanjaichon, Vinitchan Wanchana, Samart Arikit, Siwaret Plants (Basel) Article Coconut (Cocos nucifera L.) is widely recognized as one of nature’s most beneficial plants. Makapuno, a special type of coconut with a soft, jelly-like endosperm, is a high-value commercial coconut and an expensive delicacy with a high cost of planting material. The embryo rescue technique is a very useful tool to support mass propagation of makapuno coconut. Nevertheless, transplanting the seedlings is a challenge due to poor root development, which results in the inability of the plant to acclimatize. In this study, primary root excision was used in makapuno to observe the effects of primary root excision on lateral root development. The overall results showed that seedlings with roots excised had a significantly higher number of lateral roots, and shoot length also increased significantly. Using de novo transcriptome assembly and differential gene expression analysis, we identified 512 differentially expressed genes in the excised and intact root samples. ERF071, encoding an ethylene-responsive transcription factor, was identified as a highly expressed gene in excised roots compared to intact roots, and was considered a candidate gene associated with lateral root formation induced by root excision in makapuno coconut. This study provides insight into the mechanism and candidate genes involved in the development of lateral roots in coconut, which may be useful for the future breeding and mass propagation of makapuno coconut through tissue culture. MDPI 2022-12-26 /pmc/articles/PMC9823405/ /pubmed/36616233 http://dx.doi.org/10.3390/plants12010105 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Thuzar, Mya Sae-lee, Yonlada Saensuk, Chatree Pitaloka, Mutiara K. Dechkrong, Punyavee Aesomnuk, Wanchana Ruanjaichon, Vinitchan Wanchana, Samart Arikit, Siwaret Primary Root Excision Induces ERF071, Which Mediates the Development of Lateral Roots in Makapuno Coconut (Cocos nucifera) |
title | Primary Root Excision Induces ERF071, Which Mediates the Development of Lateral Roots in Makapuno Coconut (Cocos nucifera) |
title_full | Primary Root Excision Induces ERF071, Which Mediates the Development of Lateral Roots in Makapuno Coconut (Cocos nucifera) |
title_fullStr | Primary Root Excision Induces ERF071, Which Mediates the Development of Lateral Roots in Makapuno Coconut (Cocos nucifera) |
title_full_unstemmed | Primary Root Excision Induces ERF071, Which Mediates the Development of Lateral Roots in Makapuno Coconut (Cocos nucifera) |
title_short | Primary Root Excision Induces ERF071, Which Mediates the Development of Lateral Roots in Makapuno Coconut (Cocos nucifera) |
title_sort | primary root excision induces erf071, which mediates the development of lateral roots in makapuno coconut (cocos nucifera) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823405/ https://www.ncbi.nlm.nih.gov/pubmed/36616233 http://dx.doi.org/10.3390/plants12010105 |
work_keys_str_mv | AT thuzarmya primaryrootexcisioninduceserf071whichmediatesthedevelopmentoflateralrootsinmakapunococonutcocosnucifera AT saeleeyonlada primaryrootexcisioninduceserf071whichmediatesthedevelopmentoflateralrootsinmakapunococonutcocosnucifera AT saensukchatree primaryrootexcisioninduceserf071whichmediatesthedevelopmentoflateralrootsinmakapunococonutcocosnucifera AT pitalokamutiarak primaryrootexcisioninduceserf071whichmediatesthedevelopmentoflateralrootsinmakapunococonutcocosnucifera AT dechkrongpunyavee primaryrootexcisioninduceserf071whichmediatesthedevelopmentoflateralrootsinmakapunococonutcocosnucifera AT aesomnukwanchana primaryrootexcisioninduceserf071whichmediatesthedevelopmentoflateralrootsinmakapunococonutcocosnucifera AT ruanjaichonvinitchan primaryrootexcisioninduceserf071whichmediatesthedevelopmentoflateralrootsinmakapunococonutcocosnucifera AT wanchanasamart primaryrootexcisioninduceserf071whichmediatesthedevelopmentoflateralrootsinmakapunococonutcocosnucifera AT arikitsiwaret primaryrootexcisioninduceserf071whichmediatesthedevelopmentoflateralrootsinmakapunococonutcocosnucifera |