Cargando…

Intelligent Fault Diagnosis of Industrial Bearings Using Transfer Learning and CNNs Pre-Trained for Audio Classification

The training of Artificial Intelligence algorithms for machine diagnosis often requires a huge amount of data, which is scarcely available in industry. This work shows that convolutional networks pre-trained for audio classification already contain knowledge for classifying bearing vibrations, since...

Descripción completa

Detalles Bibliográficos
Autor principal: Di Maggio, Luigi Gianpio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823443/
https://www.ncbi.nlm.nih.gov/pubmed/36616809
http://dx.doi.org/10.3390/s23010211
Descripción
Sumario:The training of Artificial Intelligence algorithms for machine diagnosis often requires a huge amount of data, which is scarcely available in industry. This work shows that convolutional networks pre-trained for audio classification already contain knowledge for classifying bearing vibrations, since both tasks share the need to extract features from spectrograms. Knowledge transfer is realized through transfer learning to identify localized defects in rolling element bearings. This technique provides a tool to transfer the knowledge embedded in neural networks pre-trained for fulfilling similar tasks to diagnostic scenarios, significantly limiting the amount of data needed for fine-tuning. The VGGish model was fine-tuned for the specific diagnostic task by handling vibration samples. Data were extracted from the test bench for medium-size bearings specially set up in the mechanical engineering laboratories of the Politecnico di Torino. The experiment involved three damage classes. Results show that the model pre-trained using sound spectrograms can be successfully employed for classifying the bearing state through vibration spectrograms. The effectiveness of the model is assessed through comparisons with the existing literature.