Cargando…
Intelligent Fault Diagnosis of Industrial Bearings Using Transfer Learning and CNNs Pre-Trained for Audio Classification
The training of Artificial Intelligence algorithms for machine diagnosis often requires a huge amount of data, which is scarcely available in industry. This work shows that convolutional networks pre-trained for audio classification already contain knowledge for classifying bearing vibrations, since...
Autor principal: | Di Maggio, Luigi Gianpio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823443/ https://www.ncbi.nlm.nih.gov/pubmed/36616809 http://dx.doi.org/10.3390/s23010211 |
Ejemplares similares
-
Strategy for Fault Diagnosis on Train Plug Doors Using Audio Sensors †
por: Sun, Yongkui, et al.
Publicado: (2018) -
Fusion of Audio and Vibration Signals for Bearing Fault Diagnosis Based on a Quadratic Convolution Neural Network
por: Yan, Jin, et al.
Publicado: (2023) -
A Deep Generative Model with Multiscale Features Enabled Industrial Internet of Things for Intelligent Fault Diagnosis of Bearings
por: Hu, He-xuan, et al.
Publicado: (2023) -
Bearing Fault Diagnosis Considering the Effect of Imbalance Training Sample
por: Lin, Lin, et al.
Publicado: (2019) -
Pre-Processing Method to Improve Cross-Domain Fault Diagnosis for Bearing
por: Kim, Taeyun, et al.
Publicado: (2021)