Cargando…

Kinetics, Electronic Properties of Filled Carbon Nanotubes Investigated with Spectroscopy for Applications

The paper is dedicated to the discussion of kinetics of growth, and electronic properties of filled carbon nanotubes investigated by spectroscopy for applications. The paper starts with discussion of growth of carbon nanotubes inside metallocene-filled carbon nanotubes. Nickelocene, cobaltocene are...

Descripción completa

Detalles Bibliográficos
Autor principal: Kharlamova, Marianna V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823493/
https://www.ncbi.nlm.nih.gov/pubmed/36616086
http://dx.doi.org/10.3390/nano13010176
Descripción
Sumario:The paper is dedicated to the discussion of kinetics of growth, and electronic properties of filled carbon nanotubes investigated by spectroscopy for applications. The paper starts with discussion of growth of carbon nanotubes inside metallocene-filled carbon nanotubes. Nickelocene, cobaltocene are considered for growth of carbon nanotubes. Then, the investigations of filled carbon nanotubes by four spectroscopic techniques are discussed. Among them are Raman spectroscopy, near edge X-ray absorption fine-structure spectroscopy, photoemission spectroscopy, optical absorption spectroscopy. It is discussed that metal halogenides, metal chalcogenides, metals lead to changes in electronic structure of nanotubes with n- or p-doping. The filling of carbon nanotubes with different organic and inorganic substances results in many promising applications. This review adds significant contribution to understanding of the kinetics and electronic properties of filled SWCNTs with considering new results of recent investigations. Challenges in various fields are analyzed and summarized, which shows the author’s viewpoint of progress in the spectroscopy of filled SWCNTs. This is a valuable step toward applications of filled SWCNTs and transfer of existing ideas from lab to industrial scale.