Cargando…
Nitrates Removal from Simulated Groundwater Using Nano Zerovalent Iron Supported by Polystyrenic Gel
The main objectives of this present paper were to indicate the immobilization of nano zerovalent iron (nZVI) onto a polymeric material (Purolite A400) and the synthesis of the polymeric material (A400-nZVI) through sodium borohydride (NaBH(4)) reduction. The obtained polymeric material (A400-nZVI) w...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823507/ https://www.ncbi.nlm.nih.gov/pubmed/36616410 http://dx.doi.org/10.3390/polym15010061 |
Sumario: | The main objectives of this present paper were to indicate the immobilization of nano zerovalent iron (nZVI) onto a polymeric material (Purolite A400) and the synthesis of the polymeric material (A400-nZVI) through sodium borohydride (NaBH(4)) reduction. The obtained polymeric material (A400-nZVI) was used for the nitrate ions removal from a simulated groundwater at different conditions. The polymeric materials, without and with nano zerovalent iron (A400 and A400-nZVI), were characterized trough the FTIR, SEM-EDAX, XRD, and TGA analysis. The analysis confirmed the presence of nano zerovalent iron (nZVI) onto the polymeric material (A400). The adsorption capacity of A400-nZVI, used as polymeric adsorbent, was evaluated by kinetic and thermodynamic studies. The obtained experimental results indicated that the nitrate ions reduction was fitted well by models: pseudo-second-order kinetic and Freundlich isotherm. According to the kinetic model results, a reaction mechanism could exist in the stage of reactions. The higher value of removal nitrate (>80%) was obtained under acidic condition. The results indicated that the obtained polymeric material (A400-nZVI) can be considered as a potential polymeric adsorbent for different pollutants from groundwater and wastewater. |
---|