Cargando…

Immobilization of Strontium Aluminate into Recycled Polycarbonate Plastics towards an Afterglow and Photochromic Smart Window

A transparent smart window made of recycled polycarbonate plastic (PCP) waste was prepared and immobilized with strontium aluminate phosphor nanoparticles (SAPN). It has afterglow emission, super-hydrophobicity, durability, photostability, good mechanical properties, ultraviolet protection, and high...

Descripción completa

Detalles Bibliográficos
Autores principales: El-Hefnawy, Mohamed E., Ismail, Ali I., Alhayyani, Sultan, Al-Goul, Soha T., Zayed, Mohamed M., Abou Taleb, Manal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823531/
https://www.ncbi.nlm.nih.gov/pubmed/36616469
http://dx.doi.org/10.3390/polym15010119
Descripción
Sumario:A transparent smart window made of recycled polycarbonate plastic (PCP) waste was prepared and immobilized with strontium aluminate phosphor nanoparticles (SAPN). It has afterglow emission, super-hydrophobicity, durability, photostability, good mechanical properties, ultraviolet protection, and high optical transmittance. To create an afterglow emission polycarbonate smart window (SAPN@PCP), recycled polycarbonate waste was integrated with various concentrations of SAPN (15–52 nm). SAP micro-scale powder was made using the solid-state high temperature method. The SAP nanoparticles were produced using the top-down method. To create a colorless plastic bulk, recycled polycarbonate waste was inserted into a hot bath. This colorless plastic was thoroughly combined with SAPN and cast to create an afterglow luminous smart window. To investigate its photoluminescence properties, spectrum profiles of excitation and emission were measured. According to the luminescence parameters, the phosphorescent colorless polycarbonate plates displayed a change in color to strong green under UV illumination and greenish-yellow in a dark box. The afterglow polycarbonate smart window displayed two emission peaks at 496 and 526 nm, and an absorption wavelength of 373 nm. Upon increasing the SAPN ratio, the hydrophobic activity, hardness, photostability, and UV protection were improved. Luminescent polycarbonate substrates with lower SAPN ratio demonstrated rapid and reversible fluorescence under UV light, while the higher SAPN content in the luminous polycarbonate substrates showed afterglow.