Cargando…

Hybrid Refractive-Diffractive Lens with Reduced Chromatic and Geometric Aberrations and Learned Image Reconstruction

In this paper, we present a hybrid refractive-diffractive lens that, when paired with a deep neural network-based image reconstruction, produces high-quality, real-world images with minimal artifacts, reaching a PSNR of 28 dB on the test set. Our diffractive element compensates for the off-axis aber...

Descripción completa

Detalles Bibliográficos
Autores principales: Evdokimova, Viktoria V., Podlipnov, Vladimir V., Ivliev, Nikolay A., Petrov, Maxim V., Ganchevskaya, Sofia V., Fursov, Vladimir A., Yuzifovich, Yuri Yu., Stepanenko, Sergey O., Kazanskiy, Nikolay L., Nikonorov, Artem V., Skidanov, Roman V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823562/
https://www.ncbi.nlm.nih.gov/pubmed/36617009
http://dx.doi.org/10.3390/s23010415
Descripción
Sumario:In this paper, we present a hybrid refractive-diffractive lens that, when paired with a deep neural network-based image reconstruction, produces high-quality, real-world images with minimal artifacts, reaching a PSNR of 28 dB on the test set. Our diffractive element compensates for the off-axis aberrations of a single refractive element and has reduced chromatic aberrations across the visible light spectrum. We also describe our training set augmentation and novel quality criteria called “false edge level” (FEL), which validates that the neural network produces visually appealing images without artifacts under a wide range of ISO and exposure settings. Our quality criteria (FEL) enabled us to include real scene images without a corresponding ground truth in the training process.