Cargando…
Federated Learning via Augmented Knowledge Distillation for Heterogenous Deep Human Activity Recognition Systems
Deep learning-based Human Activity Recognition (HAR) systems received a lot of interest for health monitoring and activity tracking on wearable devices. The availability of large and representative datasets is often a requirement for training accurate deep learning models. To keep private data on us...
Autores principales: | Gad, Gad, Fadlullah, Zubair |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823596/ https://www.ncbi.nlm.nih.gov/pubmed/36616609 http://dx.doi.org/10.3390/s23010006 |
Ejemplares similares
-
Communication-efficient federated learning via knowledge distillation
por: Wu, Chuhan, et al.
Publicado: (2022) -
FedRAD: Heterogeneous Federated Learning via Relational Adaptive Distillation
por: Tang, Jianwu, et al.
Publicado: (2023) -
Knowledge distillation in deep learning and its applications
por: Alkhulaifi, Abdolmaged, et al.
Publicado: (2021) -
A federated learning framework based on transfer learning and knowledge distillation for targeted advertising
por: Su, Caiyu, et al.
Publicado: (2023) -
Screening obstructive sleep apnea patients via deep learning of knowledge distillation in the lateral cephalogram
por: Kim, Min-Jung, et al.
Publicado: (2023)