Cargando…
Deep-Learning-Based Automatic Detection of Photovoltaic Cell Defects in Electroluminescence Images
Photovoltaic (PV) cell defect detection has become a prominent problem in the development of the PV industry; however, the entire industry lacks effective technical means. In this paper, we propose a deep-learning-based defect detection method for photovoltaic cells, which addresses two technical ch...
Autores principales: | Wang, Junjie, Bi, Li, Sun, Pengxiang, Jiao, Xiaogang, Ma, Xunde, Lei, Xinyi, Luo, Yongbin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823618/ https://www.ncbi.nlm.nih.gov/pubmed/36616894 http://dx.doi.org/10.3390/s23010297 |
Ejemplares similares
-
Spectrum Analysis Enabled Periodic Feature Reconstruction Based Automatic Defect Detection System for Electroluminescence Images of Photovoltaic Modules
por: Yu, Jiachuan, et al.
Publicado: (2022) -
Efficient Cell Segmentation from Electroluminescent Images of Single-Crystalline Silicon Photovoltaic Modules and Cell-Based Defect Identification Using Deep Learning with Pseudo-Colorization
por: Lin, Horng-Horng, et al.
Publicado: (2021) -
Solution-Processable
Silicon Phthalocyanines in Electroluminescent and Photovoltaic Devices
por: Zysman-Colman, Eli, et al.
Publicado: (2016) -
Identifying defective solar cells in electroluminescence images using deep feature representations
por: Al‐Waisy, Alaa S., et al.
Publicado: (2022) -
Electroluminescence
por: Henisch, H K, et al.
Publicado: (1962)