Cargando…
Landslide Susceptibility Mapping by Fusing Convolutional Neural Networks and Vision Transformer
Landslide susceptibility mapping (LSM) is an important decision basis for regional landslide hazard risk management, territorial spatial planning and landslide decision making. The current convolutional neural network (CNN)-based landslide susceptibility mapping models do not adequately take into ac...
Autores principales: | Bao, Shuai, Liu, Jiping, Wang, Liang, Konečný, Milan, Che, Xianghong, Xu, Shenghua, Li, Pengpeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823694/ https://www.ncbi.nlm.nih.gov/pubmed/36616685 http://dx.doi.org/10.3390/s23010088 |
Ejemplares similares
-
Application of Transformer Models to Landslide Susceptibility Mapping
por: Bao, Shuai, et al.
Publicado: (2022) -
Application of convolutional neural networks based on Bayesian optimization to landslide susceptibility mapping of transmission tower foundation
por: Lin, Mansheng, et al.
Publicado: (2023) -
Crop Disease Identification by Fusing Multiscale Convolution and Vision Transformer
por: Zhu, Dingju, et al.
Publicado: (2023) -
A new strategy to map landslides with a generalized convolutional neural network
por: Prakash, Nikhil, et al.
Publicado: (2021) -
Susceptibility mapping and zoning of highway landslide disasters in China
por: Yin, Chao, et al.
Publicado: (2020)