Cargando…
Synthesis, Thermal Behavior, and Mechanical Properties of Fully Biobased Poly(Hexamethylene 2,5-Furandicarboxylate-Co-Sebacate) Copolyesters
In this research, three fully biobased poly(hexamethylene 2,5-furandicarboxylate-co-sebacate) (PHFSe) copolyesters with low contents of hexamethylene sebacate (HSe) unit (10 mol%, 20 mol%, and 30 mol%) were successfully synthesized through a two-step transesterification/esterification and polyconden...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823706/ https://www.ncbi.nlm.nih.gov/pubmed/36616435 http://dx.doi.org/10.3390/polym15010085 |
_version_ | 1784866226492669952 |
---|---|
author | Feng, Shiwei Jiang, Zhiguo Qiu, Zhaobin |
author_facet | Feng, Shiwei Jiang, Zhiguo Qiu, Zhaobin |
author_sort | Feng, Shiwei |
collection | PubMed |
description | In this research, three fully biobased poly(hexamethylene 2,5-furandicarboxylate-co-sebacate) (PHFSe) copolyesters with low contents of hexamethylene sebacate (HSe) unit (10 mol%, 20 mol%, and 30 mol%) were successfully synthesized through a two-step transesterification/esterification and polycondensation method. The chemical structure and actual composition of PHFSe copolyesters were confirmed by hydrogen nuclear magnetic resonance. The thermal behavior and mechanical property of PHFSe copolyesters were investigated and compared with those of the poly(hexamethylene 2,5-furandicarboxylate) (PHF) homopolymer. Both PHFSe copolyesters and PHF showed the high thermal stability. The basic thermal parameters, including glass transition temperature, melting temperature, and equilibrium melting temperature, gradually decreased with increasing the HSe unit content. PHFSe copolyesters crystallized more slowly than PHF under both the nonisothermal and isothermal melt crystallization conditions; however, they crystallized through the same crystallization mechanism and crystal structure. In addition, the mechanical property, especially the elongation at break of PHFSe copolyesters, was obviously improved when the HSe unit content was greater than 10 mol%. In brief, the thermal and mechanical properties of PHF may be easily tuned by changing the HSe unit content to meet various practical end-use requirements. |
format | Online Article Text |
id | pubmed-9823706 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98237062023-01-08 Synthesis, Thermal Behavior, and Mechanical Properties of Fully Biobased Poly(Hexamethylene 2,5-Furandicarboxylate-Co-Sebacate) Copolyesters Feng, Shiwei Jiang, Zhiguo Qiu, Zhaobin Polymers (Basel) Article In this research, three fully biobased poly(hexamethylene 2,5-furandicarboxylate-co-sebacate) (PHFSe) copolyesters with low contents of hexamethylene sebacate (HSe) unit (10 mol%, 20 mol%, and 30 mol%) were successfully synthesized through a two-step transesterification/esterification and polycondensation method. The chemical structure and actual composition of PHFSe copolyesters were confirmed by hydrogen nuclear magnetic resonance. The thermal behavior and mechanical property of PHFSe copolyesters were investigated and compared with those of the poly(hexamethylene 2,5-furandicarboxylate) (PHF) homopolymer. Both PHFSe copolyesters and PHF showed the high thermal stability. The basic thermal parameters, including glass transition temperature, melting temperature, and equilibrium melting temperature, gradually decreased with increasing the HSe unit content. PHFSe copolyesters crystallized more slowly than PHF under both the nonisothermal and isothermal melt crystallization conditions; however, they crystallized through the same crystallization mechanism and crystal structure. In addition, the mechanical property, especially the elongation at break of PHFSe copolyesters, was obviously improved when the HSe unit content was greater than 10 mol%. In brief, the thermal and mechanical properties of PHF may be easily tuned by changing the HSe unit content to meet various practical end-use requirements. MDPI 2022-12-25 /pmc/articles/PMC9823706/ /pubmed/36616435 http://dx.doi.org/10.3390/polym15010085 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Feng, Shiwei Jiang, Zhiguo Qiu, Zhaobin Synthesis, Thermal Behavior, and Mechanical Properties of Fully Biobased Poly(Hexamethylene 2,5-Furandicarboxylate-Co-Sebacate) Copolyesters |
title | Synthesis, Thermal Behavior, and Mechanical Properties of Fully Biobased Poly(Hexamethylene 2,5-Furandicarboxylate-Co-Sebacate) Copolyesters |
title_full | Synthesis, Thermal Behavior, and Mechanical Properties of Fully Biobased Poly(Hexamethylene 2,5-Furandicarboxylate-Co-Sebacate) Copolyesters |
title_fullStr | Synthesis, Thermal Behavior, and Mechanical Properties of Fully Biobased Poly(Hexamethylene 2,5-Furandicarboxylate-Co-Sebacate) Copolyesters |
title_full_unstemmed | Synthesis, Thermal Behavior, and Mechanical Properties of Fully Biobased Poly(Hexamethylene 2,5-Furandicarboxylate-Co-Sebacate) Copolyesters |
title_short | Synthesis, Thermal Behavior, and Mechanical Properties of Fully Biobased Poly(Hexamethylene 2,5-Furandicarboxylate-Co-Sebacate) Copolyesters |
title_sort | synthesis, thermal behavior, and mechanical properties of fully biobased poly(hexamethylene 2,5-furandicarboxylate-co-sebacate) copolyesters |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823706/ https://www.ncbi.nlm.nih.gov/pubmed/36616435 http://dx.doi.org/10.3390/polym15010085 |
work_keys_str_mv | AT fengshiwei synthesisthermalbehaviorandmechanicalpropertiesoffullybiobasedpolyhexamethylene25furandicarboxylatecosebacatecopolyesters AT jiangzhiguo synthesisthermalbehaviorandmechanicalpropertiesoffullybiobasedpolyhexamethylene25furandicarboxylatecosebacatecopolyesters AT qiuzhaobin synthesisthermalbehaviorandmechanicalpropertiesoffullybiobasedpolyhexamethylene25furandicarboxylatecosebacatecopolyesters |