Cargando…
Discovering Key Sub-Trajectories to Explain Traffic Prediction
Flow prediction has attracted extensive research attention; however, achieving reliable efficiency and interpretability from a unified model remains a challenging problem. In the literature, the Shapley method offers interpretable and explanatory insights for a unified framework for interpreting pre...
Autores principales: | Wang, Hongjun, Fan, Zipei, Chen, Jiyuan, Zhang, Lingyu, Song, Xuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823708/ https://www.ncbi.nlm.nih.gov/pubmed/36616730 http://dx.doi.org/10.3390/s23010130 |
Ejemplares similares
-
Discovering vesicle traffic network constraints by model checking
por: Shukla, Ankit, et al.
Publicado: (2017) -
Traffic prediction in SDN for explainable QoS using deep learning approach
por: Wassie, Getahun, et al.
Publicado: (2023) -
Traffic Agents Trajectory Prediction Based on Spatial–Temporal Interaction Attention
por: Xie, Jincan, et al.
Publicado: (2023) -
FedVoting: A Cross-Silo Boosting Tree Construction Method for Privacy-Preserving Long-Term Human Mobility Prediction
por: Liu, Yinghao, et al.
Publicado: (2021) -
Learning to Discover Explainable Clinical Features With Minimum Supervision
por: Al Turk, Lutfiah, et al.
Publicado: (2022)