Cargando…
Anomaly Detection and Inter-Sensor Transfer Learning on Smart Manufacturing Datasets
Smart manufacturing systems are considered the next generation of manufacturing applications. One important goal of the smart manufacturing system is to rapidly detect and anticipate failures to reduce maintenance cost and minimize machine downtime. This often boils down to detecting anomalies withi...
Autores principales: | Abdallah, Mustafa, Joung, Byung-Gun, Lee, Wo Jae, Mousoulis, Charilaos, Raghunathan, Nithin, Shakouri, Ali, Sutherland, John W., Bagchi, Saurabh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823713/ https://www.ncbi.nlm.nih.gov/pubmed/36617091 http://dx.doi.org/10.3390/s23010486 |
Ejemplares similares
-
Industrial network-based behavioral anomaly detection in AI-enabled smart manufacturing
por: Kim, HyunJin, et al.
Publicado: (2022) -
A new paradigm of reliable sensing with field-deployed electrochemical sensors integrating data redundancy and source credibility
por: Saha, Ajanta, et al.
Publicado: (2023) -
A biodegradable chipless sensor for wireless subsoil health monitoring
por: Gopalakrishnan, Sarath, et al.
Publicado: (2022) -
Measurement Science for Prognostics and Health Management for Smart Manufacturing Systems: Key Findings from a Roadmapping Workshop
por: Weiss, Brian A., et al.
Publicado: (2015) -
China’s Gridded Manufacturing Dataset
por: Fan, Chenjing, et al.
Publicado: (2022)