Cargando…
A pH-Responsive Drug Delivery System Based on Conjugated Polymer for Effective Synergistic Chemo-/Photodynamic Therapy
Stimuli-responsive drug release and photodynamic therapy (PDT) have aroused extensive attention for their enormous potential in antitumor treatment. pH-responsive drug delivery systems (PFE-DOX-1 and PFE-DOX-2) based on water-soluble conjugated polymers were constructed in this work for high-perform...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823741/ https://www.ncbi.nlm.nih.gov/pubmed/36615594 http://dx.doi.org/10.3390/molecules28010399 |
_version_ | 1784866235410808832 |
---|---|
author | Zhang, Chen Yuan, Qiong Zhang, Ziqi Tang, Yanli |
author_facet | Zhang, Chen Yuan, Qiong Zhang, Ziqi Tang, Yanli |
author_sort | Zhang, Chen |
collection | PubMed |
description | Stimuli-responsive drug release and photodynamic therapy (PDT) have aroused extensive attention for their enormous potential in antitumor treatment. pH-responsive drug delivery systems (PFE-DOX-1 and PFE-DOX-2) based on water-soluble conjugated polymers were constructed in this work for high-performance synergistic chemo-/PDT therapy, in which the anticancer drug doxorubicin (DOX) is covalently attached to the side chains of the conjugated polymers via acid-labile imine and acylhydrazone bonds. Concurrently, the intense fluorescence of poly(fluorene-co-ethynylene) (PFE) is effectively quenched due to the energy/electron transfer (ET) between the PFE-conjugated backbone and DOX. Effective pH-responsive drug release from PFE-DOX-2 is achieved by the cleavage of acylhydrazone linkages in the acidic tumor intracellular microenvironment. Additionally, the drug release process can be monitored by the recovered fluorescence of conjugated polymers. Furthermore, the conjugated polymers can produce reactive oxygen species (ROS) under light irradiation after drug release in an acidic environment, which prevents possible phototoxicity to normal tissues. It is noted that PFE-DOX-2 demonstrates remarkable antitumor cell performance, which is attributed to its efficient cell uptake and powerful synergistic chemo-/PDT therapeutic effectiveness. This report thus provides a promising strategy for in vivo anticancer treatment with the construction of a stimuli-responsive multifunctional drug delivery system. |
format | Online Article Text |
id | pubmed-9823741 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98237412023-01-08 A pH-Responsive Drug Delivery System Based on Conjugated Polymer for Effective Synergistic Chemo-/Photodynamic Therapy Zhang, Chen Yuan, Qiong Zhang, Ziqi Tang, Yanli Molecules Article Stimuli-responsive drug release and photodynamic therapy (PDT) have aroused extensive attention for their enormous potential in antitumor treatment. pH-responsive drug delivery systems (PFE-DOX-1 and PFE-DOX-2) based on water-soluble conjugated polymers were constructed in this work for high-performance synergistic chemo-/PDT therapy, in which the anticancer drug doxorubicin (DOX) is covalently attached to the side chains of the conjugated polymers via acid-labile imine and acylhydrazone bonds. Concurrently, the intense fluorescence of poly(fluorene-co-ethynylene) (PFE) is effectively quenched due to the energy/electron transfer (ET) between the PFE-conjugated backbone and DOX. Effective pH-responsive drug release from PFE-DOX-2 is achieved by the cleavage of acylhydrazone linkages in the acidic tumor intracellular microenvironment. Additionally, the drug release process can be monitored by the recovered fluorescence of conjugated polymers. Furthermore, the conjugated polymers can produce reactive oxygen species (ROS) under light irradiation after drug release in an acidic environment, which prevents possible phototoxicity to normal tissues. It is noted that PFE-DOX-2 demonstrates remarkable antitumor cell performance, which is attributed to its efficient cell uptake and powerful synergistic chemo-/PDT therapeutic effectiveness. This report thus provides a promising strategy for in vivo anticancer treatment with the construction of a stimuli-responsive multifunctional drug delivery system. MDPI 2023-01-03 /pmc/articles/PMC9823741/ /pubmed/36615594 http://dx.doi.org/10.3390/molecules28010399 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Chen Yuan, Qiong Zhang, Ziqi Tang, Yanli A pH-Responsive Drug Delivery System Based on Conjugated Polymer for Effective Synergistic Chemo-/Photodynamic Therapy |
title | A pH-Responsive Drug Delivery System Based on Conjugated Polymer for Effective Synergistic Chemo-/Photodynamic Therapy |
title_full | A pH-Responsive Drug Delivery System Based on Conjugated Polymer for Effective Synergistic Chemo-/Photodynamic Therapy |
title_fullStr | A pH-Responsive Drug Delivery System Based on Conjugated Polymer for Effective Synergistic Chemo-/Photodynamic Therapy |
title_full_unstemmed | A pH-Responsive Drug Delivery System Based on Conjugated Polymer for Effective Synergistic Chemo-/Photodynamic Therapy |
title_short | A pH-Responsive Drug Delivery System Based on Conjugated Polymer for Effective Synergistic Chemo-/Photodynamic Therapy |
title_sort | ph-responsive drug delivery system based on conjugated polymer for effective synergistic chemo-/photodynamic therapy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823741/ https://www.ncbi.nlm.nih.gov/pubmed/36615594 http://dx.doi.org/10.3390/molecules28010399 |
work_keys_str_mv | AT zhangchen aphresponsivedrugdeliverysystembasedonconjugatedpolymerforeffectivesynergisticchemophotodynamictherapy AT yuanqiong aphresponsivedrugdeliverysystembasedonconjugatedpolymerforeffectivesynergisticchemophotodynamictherapy AT zhangziqi aphresponsivedrugdeliverysystembasedonconjugatedpolymerforeffectivesynergisticchemophotodynamictherapy AT tangyanli aphresponsivedrugdeliverysystembasedonconjugatedpolymerforeffectivesynergisticchemophotodynamictherapy AT zhangchen phresponsivedrugdeliverysystembasedonconjugatedpolymerforeffectivesynergisticchemophotodynamictherapy AT yuanqiong phresponsivedrugdeliverysystembasedonconjugatedpolymerforeffectivesynergisticchemophotodynamictherapy AT zhangziqi phresponsivedrugdeliverysystembasedonconjugatedpolymerforeffectivesynergisticchemophotodynamictherapy AT tangyanli phresponsivedrugdeliverysystembasedonconjugatedpolymerforeffectivesynergisticchemophotodynamictherapy |