Cargando…
Machine Learning Estimation of the Phase at the Fading Points of an OFDR-Based Distributed Sensor
The paper reports a machine learning approach for estimating the phase in a distributed acoustic sensor implemented using optical frequency domain reflectometry, with enhanced robustness at the fading points. A neural network configuration was trained using a simulated set of optical signals that we...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823760/ https://www.ncbi.nlm.nih.gov/pubmed/36616860 http://dx.doi.org/10.3390/s23010262 |
Sumario: | The paper reports a machine learning approach for estimating the phase in a distributed acoustic sensor implemented using optical frequency domain reflectometry, with enhanced robustness at the fading points. A neural network configuration was trained using a simulated set of optical signals that were modeled after the Rayleigh scattering pattern of a perturbed fiber. Firstly, the performance of the network was verified using another set of numerically generated scattering profiles to compare the achieved accuracy levels with the standard homodyne detection method. Then, the proposed method was tested on real experimental measurements, which indicated a detection improvement of at least 5.1 dB with respect to the standard approach. |
---|