Cargando…
Up-Sampling Method for Low-Resolution LiDAR Point Cloud to Enhance 3D Object Detection in an Autonomous Driving Environment
Automobile datasets for 3D object detection are typically obtained using expensive high-resolution rotating LiDAR with 64 or more channels (Chs). However, the research budget may be limited such that only a low-resolution LiDAR of 32-Ch or lower can be used. The lower the resolution of the point clo...
Autores principales: | You, Jihwan, Kim, Young-Keun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823772/ https://www.ncbi.nlm.nih.gov/pubmed/36616921 http://dx.doi.org/10.3390/s23010322 |
Ejemplares similares
-
Real-Time LiDAR Point-Cloud Moving Object Segmentation for Autonomous Driving
por: Xie, Xing, et al.
Publicado: (2023) -
Semantic Point Cloud Mapping of LiDAR Based on Probabilistic Uncertainty Modeling for Autonomous Driving
por: Cho, Sungjin, et al.
Publicado: (2020) -
Real time object detection using LiDAR and camera fusion for autonomous driving
por: Liu, Haibin, et al.
Publicado: (2023) -
Systematic and Comprehensive Review of Clustering and Multi-Target Tracking Techniques for LiDAR Point Clouds in Autonomous Driving Applications
por: Adnan, Muhammad, et al.
Publicado: (2023) -
LiDAR Point Cloud Generation for SLAM Algorithm Evaluation
por: Sobczak, Łukasz, et al.
Publicado: (2021)