Cargando…
Correction: Lopez-Vazquez et al. Video Image Enhancement and Machine Learning Pipeline for Underwater Animal Detection and Classification at Cabled Observatories. Sensors 2020, 20, 726
Autores principales: | Lopez-Vazquez, Vanesa, Lopez-Guede, Jose Manuel, Marini, Simone, Fanelli, Emanuela, Johnsen, Espen, Aguzzi, Jacopo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823824/ https://www.ncbi.nlm.nih.gov/pubmed/36617155 http://dx.doi.org/10.3390/s23010016 |
Ejemplares similares
-
Video Image Enhancement and Machine Learning Pipeline for Underwater Animal Detection and Classification at Cabled Observatories
por: Lopez-Vazquez, Vanesa, et al.
Publicado: (2020) -
Tracking Fish Abundance by Underwater Image Recognition
por: Marini, Simone, et al.
Publicado: (2018) -
A New Colorimetrically-Calibrated Automated Video-Imaging Protocol for Day-Night Fish Counting at the OBSEA Coastal Cabled Observatory
por: del Río, Joaquín, et al.
Publicado: (2013) -
A Flexible Autonomous Robotic Observatory Infrastructure for Bentho-Pelagic Monitoring †
por: Aguzzi, Jacopo, et al.
Publicado: (2020) -
Towards Naples Ecological REsearch for Augmented Observatories (NEREA): The NEREA-Fix Module, a Stand-Alone Platform for Long-Term Deep-Sea Ecosystem Monitoring †
por: Fanelli, Emanuela, et al.
Publicado: (2020)