Cargando…
A Light Field Full-Focus Image Feature Point Matching Method with an Improved ORB Algorithm
Most of the traditional image feature point extraction and matching methods are based on a series of light properties of images. These light properties easily conflict with the distinguishability of the image features. The traditional light imaging methods focus only on a fixed depth of the target s...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823986/ https://www.ncbi.nlm.nih.gov/pubmed/36616724 http://dx.doi.org/10.3390/s23010123 |
_version_ | 1784866297635405824 |
---|---|
author | Zuo, Ying Guan, Hongliang Duan, Fuzhou Wu, Tingsong |
author_facet | Zuo, Ying Guan, Hongliang Duan, Fuzhou Wu, Tingsong |
author_sort | Zuo, Ying |
collection | PubMed |
description | Most of the traditional image feature point extraction and matching methods are based on a series of light properties of images. These light properties easily conflict with the distinguishability of the image features. The traditional light imaging methods focus only on a fixed depth of the target scene, and subjects at other depths are often easily blurred. This makes the traditional image feature point extraction and matching methods suffer from a low accuracy and a poor robustness. Therefore, in this paper, a light field camera is used as a sensor to acquire image data and to generate a full-focus image with the help of the rich depth information inherent in the original image of the light field. The traditional ORB feature point extraction and matching algorithm is enhanced with the goal of improving the number and accuracy of the feature point extraction for the light field full-focus images. The results show that the improved ORB algorithm extracts not only most of the features in the target scene but also covers the edge part of the image to a greater extent and produces extracted feature points which are evenly distributed for the light field full-focus image. Moreover, the extracted feature points are not repeated in a large number in a certain part of the image, eliminating the aggregation phenomenon that exists in traditional ORB algorithms. |
format | Online Article Text |
id | pubmed-9823986 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98239862023-01-08 A Light Field Full-Focus Image Feature Point Matching Method with an Improved ORB Algorithm Zuo, Ying Guan, Hongliang Duan, Fuzhou Wu, Tingsong Sensors (Basel) Article Most of the traditional image feature point extraction and matching methods are based on a series of light properties of images. These light properties easily conflict with the distinguishability of the image features. The traditional light imaging methods focus only on a fixed depth of the target scene, and subjects at other depths are often easily blurred. This makes the traditional image feature point extraction and matching methods suffer from a low accuracy and a poor robustness. Therefore, in this paper, a light field camera is used as a sensor to acquire image data and to generate a full-focus image with the help of the rich depth information inherent in the original image of the light field. The traditional ORB feature point extraction and matching algorithm is enhanced with the goal of improving the number and accuracy of the feature point extraction for the light field full-focus images. The results show that the improved ORB algorithm extracts not only most of the features in the target scene but also covers the edge part of the image to a greater extent and produces extracted feature points which are evenly distributed for the light field full-focus image. Moreover, the extracted feature points are not repeated in a large number in a certain part of the image, eliminating the aggregation phenomenon that exists in traditional ORB algorithms. MDPI 2022-12-23 /pmc/articles/PMC9823986/ /pubmed/36616724 http://dx.doi.org/10.3390/s23010123 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zuo, Ying Guan, Hongliang Duan, Fuzhou Wu, Tingsong A Light Field Full-Focus Image Feature Point Matching Method with an Improved ORB Algorithm |
title | A Light Field Full-Focus Image Feature Point Matching Method with an Improved ORB Algorithm |
title_full | A Light Field Full-Focus Image Feature Point Matching Method with an Improved ORB Algorithm |
title_fullStr | A Light Field Full-Focus Image Feature Point Matching Method with an Improved ORB Algorithm |
title_full_unstemmed | A Light Field Full-Focus Image Feature Point Matching Method with an Improved ORB Algorithm |
title_short | A Light Field Full-Focus Image Feature Point Matching Method with an Improved ORB Algorithm |
title_sort | light field full-focus image feature point matching method with an improved orb algorithm |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823986/ https://www.ncbi.nlm.nih.gov/pubmed/36616724 http://dx.doi.org/10.3390/s23010123 |
work_keys_str_mv | AT zuoying alightfieldfullfocusimagefeaturepointmatchingmethodwithanimprovedorbalgorithm AT guanhongliang alightfieldfullfocusimagefeaturepointmatchingmethodwithanimprovedorbalgorithm AT duanfuzhou alightfieldfullfocusimagefeaturepointmatchingmethodwithanimprovedorbalgorithm AT wutingsong alightfieldfullfocusimagefeaturepointmatchingmethodwithanimprovedorbalgorithm AT zuoying lightfieldfullfocusimagefeaturepointmatchingmethodwithanimprovedorbalgorithm AT guanhongliang lightfieldfullfocusimagefeaturepointmatchingmethodwithanimprovedorbalgorithm AT duanfuzhou lightfieldfullfocusimagefeaturepointmatchingmethodwithanimprovedorbalgorithm AT wutingsong lightfieldfullfocusimagefeaturepointmatchingmethodwithanimprovedorbalgorithm |