Cargando…
Functional Piezoresistive Polymer Composites Based on CO(2) Laser-Irradiated Graphene Oxide-Loaded Polyurethane: Morphology, Structure, Electrical and Piezoresistive Properties
Nanocomposite materials have recently attracted great attention for their wide range of applications, such as in smart materials, flexible electronics, and deformation sensing applications. Such materials make it possible to combine a polymer with functional fillers. In this study, flexible artifici...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824016/ https://www.ncbi.nlm.nih.gov/pubmed/36616078 http://dx.doi.org/10.3390/nano13010168 |
_version_ | 1784866305131675648 |
---|---|
author | Mastropasqua, Chiara Veca, Antonino Damin, Alessandro Brunella, Valentina Cesano, Federico |
author_facet | Mastropasqua, Chiara Veca, Antonino Damin, Alessandro Brunella, Valentina Cesano, Federico |
author_sort | Mastropasqua, Chiara |
collection | PubMed |
description | Nanocomposite materials have recently attracted great attention for their wide range of applications, such as in smart materials, flexible electronics, and deformation sensing applications. Such materials make it possible to combine a polymer with functional fillers. In this study, flexible artificial leathers, exhibiting insulating properties and containing 1.5 or 2wt.% of graphene oxide (GO) in the polyurethane (PU) layer, were electrically activated via CO(2) laser irradiation to obtain conductive paths at the surface exposed to the laser beam. As the material retained its insulating properties out of the irradiation areas, the laser scribing method allowed, at least in principle, a printed circuit to be easily and quickly fabricated. Combining a variety of investigation methods, including scanning electron microscopy (SEM), optical profilometry, IR and Raman spectroscopies, and direct current (DC) and alternate current (AC) electrical measurements, the effects of the laser irradiation were investigated, and the so-obtained electrical properties of laser-activated GO/PU regions were elucidated to unveil their potential use in both static and dynamic mechanical conditions. In more detail, it was shown that under appropriate CO(2) laser irradiation, GO sheets into the GO/PU layer were locally photoreduced to form reduced-GO (RGO) sheets. It was verified that the RGO sheets were entangled, forming an accumulation path on the surface directly exposed to the laser beam. As the laser process was performed along regular paths, these RGO sheets formed electrically conductive wires, which exhibited piezoresistive properties when exposed to mechanical deformations. It was also verified that such piezoresistive paths showed good reproducibility when subjected to small flexural stresses during cyclic testing conditions. In brief, laser-activated GO/PU artificial leathers may represent a new generation of metal-free materials for electrical transport applications of low-current signals and embedded deformation sensors. |
format | Online Article Text |
id | pubmed-9824016 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98240162023-01-08 Functional Piezoresistive Polymer Composites Based on CO(2) Laser-Irradiated Graphene Oxide-Loaded Polyurethane: Morphology, Structure, Electrical and Piezoresistive Properties Mastropasqua, Chiara Veca, Antonino Damin, Alessandro Brunella, Valentina Cesano, Federico Nanomaterials (Basel) Article Nanocomposite materials have recently attracted great attention for their wide range of applications, such as in smart materials, flexible electronics, and deformation sensing applications. Such materials make it possible to combine a polymer with functional fillers. In this study, flexible artificial leathers, exhibiting insulating properties and containing 1.5 or 2wt.% of graphene oxide (GO) in the polyurethane (PU) layer, were electrically activated via CO(2) laser irradiation to obtain conductive paths at the surface exposed to the laser beam. As the material retained its insulating properties out of the irradiation areas, the laser scribing method allowed, at least in principle, a printed circuit to be easily and quickly fabricated. Combining a variety of investigation methods, including scanning electron microscopy (SEM), optical profilometry, IR and Raman spectroscopies, and direct current (DC) and alternate current (AC) electrical measurements, the effects of the laser irradiation were investigated, and the so-obtained electrical properties of laser-activated GO/PU regions were elucidated to unveil their potential use in both static and dynamic mechanical conditions. In more detail, it was shown that under appropriate CO(2) laser irradiation, GO sheets into the GO/PU layer were locally photoreduced to form reduced-GO (RGO) sheets. It was verified that the RGO sheets were entangled, forming an accumulation path on the surface directly exposed to the laser beam. As the laser process was performed along regular paths, these RGO sheets formed electrically conductive wires, which exhibited piezoresistive properties when exposed to mechanical deformations. It was also verified that such piezoresistive paths showed good reproducibility when subjected to small flexural stresses during cyclic testing conditions. In brief, laser-activated GO/PU artificial leathers may represent a new generation of metal-free materials for electrical transport applications of low-current signals and embedded deformation sensors. MDPI 2022-12-30 /pmc/articles/PMC9824016/ /pubmed/36616078 http://dx.doi.org/10.3390/nano13010168 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mastropasqua, Chiara Veca, Antonino Damin, Alessandro Brunella, Valentina Cesano, Federico Functional Piezoresistive Polymer Composites Based on CO(2) Laser-Irradiated Graphene Oxide-Loaded Polyurethane: Morphology, Structure, Electrical and Piezoresistive Properties |
title | Functional Piezoresistive Polymer Composites Based on CO(2) Laser-Irradiated Graphene Oxide-Loaded Polyurethane: Morphology, Structure, Electrical and Piezoresistive Properties |
title_full | Functional Piezoresistive Polymer Composites Based on CO(2) Laser-Irradiated Graphene Oxide-Loaded Polyurethane: Morphology, Structure, Electrical and Piezoresistive Properties |
title_fullStr | Functional Piezoresistive Polymer Composites Based on CO(2) Laser-Irradiated Graphene Oxide-Loaded Polyurethane: Morphology, Structure, Electrical and Piezoresistive Properties |
title_full_unstemmed | Functional Piezoresistive Polymer Composites Based on CO(2) Laser-Irradiated Graphene Oxide-Loaded Polyurethane: Morphology, Structure, Electrical and Piezoresistive Properties |
title_short | Functional Piezoresistive Polymer Composites Based on CO(2) Laser-Irradiated Graphene Oxide-Loaded Polyurethane: Morphology, Structure, Electrical and Piezoresistive Properties |
title_sort | functional piezoresistive polymer composites based on co(2) laser-irradiated graphene oxide-loaded polyurethane: morphology, structure, electrical and piezoresistive properties |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824016/ https://www.ncbi.nlm.nih.gov/pubmed/36616078 http://dx.doi.org/10.3390/nano13010168 |
work_keys_str_mv | AT mastropasquachiara functionalpiezoresistivepolymercompositesbasedonco2laserirradiatedgrapheneoxideloadedpolyurethanemorphologystructureelectricalandpiezoresistiveproperties AT vecaantonino functionalpiezoresistivepolymercompositesbasedonco2laserirradiatedgrapheneoxideloadedpolyurethanemorphologystructureelectricalandpiezoresistiveproperties AT daminalessandro functionalpiezoresistivepolymercompositesbasedonco2laserirradiatedgrapheneoxideloadedpolyurethanemorphologystructureelectricalandpiezoresistiveproperties AT brunellavalentina functionalpiezoresistivepolymercompositesbasedonco2laserirradiatedgrapheneoxideloadedpolyurethanemorphologystructureelectricalandpiezoresistiveproperties AT cesanofederico functionalpiezoresistivepolymercompositesbasedonco2laserirradiatedgrapheneoxideloadedpolyurethanemorphologystructureelectricalandpiezoresistiveproperties |