Cargando…
Honeycomb Artifact Removal Using Convolutional Neural Network for Fiber Bundle Imaging
We present a new deep learning framework for removing honeycomb artifacts yielded by optical path blocking of cladding layers in fiber bundle imaging. The proposed framework, HAR-CNN, provides an end-to-end mapping from a raw fiber bundle image to an artifact-free image via a convolution neural netw...
Autores principales: | Kim, Eunchan, Kim, Seonghoon, Choi, Myunghwan, Seo, Taewon, Yang, Sungwook |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824069/ https://www.ncbi.nlm.nih.gov/pubmed/36616931 http://dx.doi.org/10.3390/s23010333 |
Ejemplares similares
-
Fiber Bundle Image Reconstruction Using Convolutional Neural Networks and Bundle Rotation in Endomicroscopy
por: Eadie, Matthew, et al.
Publicado: (2023) -
Implementation of a Convolutional Neural Network for Eye Blink Artifacts Removal From the Electroencephalography Signal
por: Jurczak, Marcin, et al.
Publicado: (2022) -
MEGnet: Automatic ICA-based artifact removal for MEG using spatiotemporal convolutional neural networks
por: Treacher, Alex H., et al.
Publicado: (2021) -
Intracerebral EEG Artifact Identification Using Convolutional Neural Networks
por: Nejedly, Petr, et al.
Publicado: (2018) -
Bundle geodesic convolutional neural network for diffusion-weighted imaging segmentation
por: Liu, Renfei, et al.
Publicado: (2022)